
	
  

Early	
  Journal	
  Content	
  on	
  JSTOR,	
  Free	
  to	
  Anyone	
  in	
  the	
  World	
  

This	
  article	
  is	
  one	
  of	
  nearly	
  500,000	
  scholarly	
  works	
  digitized	
  and	
  made	
  freely	
  available	
  to	
  everyone	
  in	
  
the	
  world	
  by	
  JSTOR.	
  	
  

Known	
  as	
  the	
  Early	
  Journal	
  Content,	
  this	
  set	
  of	
  works	
  include	
  research	
  articles,	
  news,	
  letters,	
  and	
  other	
  
writings	
  published	
  in	
  more	
  than	
  200	
  of	
  the	
  oldest	
  leading	
  academic	
  journals.	
  The	
  works	
  date	
  from	
  the	
  
mid-­‐seventeenth	
  to	
  the	
  early	
  twentieth	
  centuries.	
  	
  

	
  We	
  encourage	
  people	
  to	
  read	
  and	
  share	
  the	
  Early	
  Journal	
  Content	
  openly	
  and	
  to	
  tell	
  others	
  that	
  this	
  
resource	
  exists.	
  	
  People	
  may	
  post	
  this	
  content	
  online	
  or	
  redistribute	
  in	
  any	
  way	
  for	
  non-­‐commercial	
  
purposes.	
  

Read	
  more	
  about	
  Early	
  Journal	
  Content	
  at	
  http://about.jstor.org/participate-­‐jstor/individuals/early-­‐
journal-­‐content.	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

JSTOR	
  is	
  a	
  digital	
  library	
  of	
  academic	
  journals,	
  books,	
  and	
  primary	
  source	
  objects.	
  JSTOR	
  helps	
  people	
  
discover,	
  use,	
  and	
  build	
  upon	
  a	
  wide	
  range	
  of	
  content	
  through	
  a	
  powerful	
  research	
  and	
  teaching	
  
platform,	
  and	
  preserves	
  this	
  content	
  for	
  future	
  generations.	
  JSTOR	
  is	
  part	
  of	
  ITHAKA,	
  a	
  not-­‐for-­‐profit	
  
organization	
  that	
  also	
  includes	
  Ithaka	
  S+R	
  and	
  Portico.	
  For	
  more	
  information	
  about	
  JSTOR,	
  please	
  
contact	
  support@jstor.org.	
  



THE 

AM1 ERICAN 

MlATHEMATICAL MONTHLY 

VOLUME XX FEBRUARY, 1913 NUMBER 2 

HISTORY OF THE EXPONENTIAL AND LOGARITHMIC CONCEPTS. 

By FLORIAN CAJORI, Colorado College. 

THE MODERN EXPONENTIAL NOTATION 
(Continued). 

J. H. Rahn's Deutsche Algebra, printed in Zurich, 1659, contains for positive 
integral powers two notations, one using the cartesian exponents, a3, x4, the other 
consisting in writing a small spiral between the base and the exponent on the 
right. Thus a J 3 signifies a3. The spiral signifies involution, a process which 
he calls involviren. An English translation, altered and augmented by John Pell, 
was made by Thomas Brancker and published 1668 in London.1 In the same 
year positive integral exponents were used by Lord Brouncker in an early volume 
of the Philosophical Transactions of London.2 In these transactions none of the 
pre-descartian notations for powers appear, except a few times in an article of 
1714, written by John Cotes. 

Of interest is the following passage in Newton's Universal Arithmetick (which 
consists of lectures delivered at Cambridge in the period, 1669-1685 and first 
printed 1707): "Thus </ 64 denotes 8; and < 3 : 64 denotes 4.... There are 
some, that to denote the Square or first Power, make use of q, and of c for the 
Cube, qq for the Biquadrate, and qc for the Quadrato-Cube, etc. . . . Others 
make use of other sorts of Notes, but they are now almost out of Fashion."3 
In an edition of 1679 of the works of Fermat the algebraic notation of Vieta, 
originally followed by Fermat, is discarded in favor of the exponents of Descartes.4 
It would seem, from what has been cited, that about 1660 or 1670 the positive 
integral exponent had won an undisputed place in algebraic notation. Though 
generally adopted, it was not universally so. A large volume, the P. Gasparis 
Schotti Cursus matheniaticus, Frankfurt a. M., 1661, and the second edition of 
Diophantus by Bachet de Meziriac (Toulouse, 1670), contain no trace of the 
modern exponential notation. Joseph Raphson's explanation of his method 

'See G. Wertheim in Bibliotheca mathematica, 3d S., Vol. III, 1902, pp. 113-126. 
2 Phil. Trans., Vol. III, for anno 1668, printed 1669, p. 647. 
3 Newton's Universal Arithmetick, London, 1728, p. 7. 
4 (Euvres de Fermat. Ed. PAUL TANNERY ET CHARLES HENRY, T. I, Paris, 1891, p. 91 

foot-note. 
35 



36 HISTORY OF LOGARITHMS 

of approximation to the roots of numerical equations, printed in the Latin edition 
of John Wallis's Algebra, in 1693, does not use positive integral exponents; 
Raphson uses powers of g up to g'0, but in every instance he writes out each of 
the factors, after the manner of Harriot. 

It is worthy of note that for a long while there were two different notations 
for the square of a letter. Some wrote aa; others a2. It would be rather difficult 
to make out a clear case in favor of a2, were one to base the argument on the 
greater economy of space. The symbolism aa was preferred by Descartes, 
Huygens, Rahn, Kersey, Wallis, Newton, Halley, Rolle, L. Euler - in fact, by 
most writers of the second half of the seventeenth and of the eighteenth centuries; 
a2 was preferred by Leibniz, Ozanam, David Gregory. 

Negative and fractional exponential notations had been suggested by Chuquet, 
Stevin and others. The modern symbolism is due to Wallis and Newton. 

In his Arithmetica infinitorum, Oxford, 1656, Wallis uses positive integral 
exponents and speaks of negative and fractional " indices."' But he does not 
actually write a1r for 1/a, or a' for a He speaks of the series 1/ 4i1, 1/ 52, 
1/ 3, etc., as having the "index-2," the series 1, 4, 9, *. as having the 
"index 2," the series '1I, 718, 5/27, ... as having the "index 2."2 Our 
modern notation involving fractional and negative exponents was formally 
proposed about a dozen years later. On June 13, 1676, Newton wrote to H. 
Oldenburg, then secretary of the Royal Society of London, a letter which was 
forwarded to Leibniz. The letter contains the following passage, which is 
interesting as containing the binomial theorem and explaining the use of negative 
and fractional exponents: 

Sed extractiones radicum multum abbreviantur per hoc Theorema. 

P--1it n .PM/n+m 
rnn r-2nC+ r- 3n D C p + PQIn=PmIn+AQ + 2n BQ + m CQ+ DQ+& 

Ubi P + PQ significat quantitatem, cujus radix, vel etiam dimensio qucevis, vel radix dimensionis, 
investiganda est; P, primum terminum quantitatis ejus; Q, reliquos terminos divisos per primum. 
Et m/n, numeralem indicem dimensionis ipsius P + PQ: .sive dimensio illa integra sit; sive, ut ita 
loquar, fracta; sive affirmativa, sive negativa. Nam, sicut analystc, pro aa, aaa, &c. scribere solent 
a2, a3, &c. sic ego, pro al a, l a3, V1ca5, &c. scribo ai, aa, as; & pro 1/a, 1/aa, 1/aaa, scribo a-', 
a-2, a-3.3 

1 J. Wallis, Arithmetica infinitorum, 1656, p. 80, Prop. CVI. 
2 Ofinterest is the following quotation from a discussion by T. P. Nunn, in the Mathematical 

Gazette, Vol. VI, 1912, p. 255: "Those who are acquainted with the work of John Wallis will 
remember that he invented negative and fractional indices in the course of an investigation into 
methods of evaluating areas, etc. He had discovered that if the ordinates of a curve follow 
the law y = kxn, its area follows the law A = 1/(n + 1) * kXn+l, n being (necessarily) a positive 
integer. This law is so remarkably simple and so powerful as a method that Wallis was prompted 
to inquire whether cases in which the ordinates follow such laws as y = k/xn, y = k/x could not 
be brought within its scope. He found that this extension of the law would be possible if k/xn 
could be written kx-n, and kVx as kxl I". From this, from numerous other historical instances 
and from general psychological observation, I draw the conclusion that extensions of notation 
should be taught because and when they are needed for the attainment of some practical purpose, 
and that logical criticism should come after the suggestion of an extension to assure us of its 
validity." 

3 Isaaci Newtoni Opera (ed. S. Horsley), Tom. IV, Londini, 1782, p. 525. 
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It is worthy of note that the modern fractional exponent was first introduced 
by Newton in the announcement of his Binomial Theorem, invented by him 
some time before 1669. Newton used also negative fractional exponents. In 
November, 1676, Leibniz collected some of his results on a sheet of paper; he 
uses here the notation1 '3, x-. It should be observed also that the use of 
literal exponents is suggested in Newton's form for the binomial theorem as 
given above, and that literal exponents came to be generally used in the latter 
part of the seventeenth century by Newton, Leibniz and their followers. Per- 
haps the earliest occurrence of literal exponents is in Wallis's Mathesis universalis, 
Oxford, 1657, where a few expressions like a/ dRd = R, ARm X ARn = A2Rm+n 
have been noticed.2 

The theory of exponents, involving positive, negative and fractional values, 
is explained and freely used in the much respected and widely read work, entitled, 
Analyse demontree, by Charles Reyneau, Paris, 1708. The theory is explained 
in the introduction to the first volume. This is done because the treatises on 
algebra then in use did not usually contain it. Reyneau uses these words: 
"Le seul calcul qui n'est pas explique dans les Traites d'Algebre dont on vient 
de parler, est celui des exposants des puissances."3 In deriving rules for differ- 
entiation,4 Reyneau passes from xx = a to xlx = la, and from xxx = yyy to xxix = 
yYly. 

The interesting question arises, when and where did the union between the 
exponential and logarithmic concepts take place? It did not occur until the 
eighteenth century. As is quite proper, there was quite a long courtship. It 
goes back to the time of Wallis. In the twelfth chapter of his Algebra, 1685, 
Wallis develops the theory of logarithms, beginning with two progressions 1, 2, 
4, 8, * and 0, 1, 2, 3, * .. He then generalizes by taking 

1 r rr * r3 * r4 r6 etc. 
0 -1 2 * 3 - 4 * 5 * 6 etc. 

and remarks that " these exponents they call logarithms, which are artificial numbers, 
so answering to the natural numbers, as that the addition and subduction of 
these answers to the multiplication and division of the natural numbers." And 
yet, Wallis does not come out, resolutely, with the modern definition of a loga- 
rithm, and use it. 

A similar point of view was reached5 by John Bernoulli I in a letter of May, 
1694, addressed to Leibniz. Bernoulli discusses an "ideam novi ... calculi per- 
currentis," a terminology later discarded in favor of calculus of "exponential 
quantities." He speaks of the construction of exponential curves xx = y by 

1 C. I. Gerhardt, Der Briefwechsel v. G. W. Leibniz mit Mathematikern, Bd. I, Berlin, 1899, 
p. 230. 

2 G. Enestrom, Bibliotheca mathematica, 3d S., Vol. 9, 1908-1909, p. 329. 
3 Ch. Reyneau, Analyse demontree, Vol. I, Paris, 1708, p. xvii. 
4Analyse demontree, Vol. II, 1708, p. 806. 
6 Got. Gul. Leibnitii et Johan. Bernoullii Commercium philosophicum et mathematicum, T. I, 

1745, p. 8. 
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means of the ordinary logarithmic curve which he says is itself a curve of that 
type, having the equation ax = y. Bernoulli assumes the logarithmic curve to 
be drawn and uses the graph for plotting the equation x= y. He assumes a 
value x1, then measures off the ordinate log x1 on the logarithmic curve and 
geometrically constructs the product xi log x1 = log yi. Finally he finds, again 
by the aid of the logarithmic curve, the antilogarithm yi. This y1i, together 
with the assumed value of x1, yields a point on the curve xx = y. Thus the curve 
can be constructed by points. From our point of view, the interest of this 
process lies in the fact that the logarithmic curve and therefore the logarithm 
itself, is connected with the equation ax = y. Here x is looked upon as the 
logarithm of y. Bernoulli makes no mention here of arithmetic and geometric 
progressions. His procedure involves the modern definition of a logarithm, which, 
however, he does not explicitly state. The process shows that Bernoulli passed 
from xx = y to x log x = log y, though he did not actually write down this last 
equation. In June, 1694, Leibniz sent J. Bernoulli a letter in reply, in which 
he writes1 both xx = y and x log x = log y. We see from the above that Leibniz 
and J. Bernoulli had a grasp at this time of the exponential function. 

II. FROM LEIBNIZ AND JOOHN BERNOULLI I TO EULER. 
1712-1747. 

UNSUCCESSFUL ATTEMPTS TO CREATE A THEORY OF LOGARITHMS OF 

NEGATIVE NULMBERS. 

In the eighteenth century the tendency to take rules derived only for a special 
case and apply them to more general cases became more pronounced than it had 
been. It is a tendency which in the nineteenth century came to be called the 
"principle of the permanence of equivalent forms" or, better still, the "principle 
of the permanence of formal laws." To-day, we look upon these extensions as 
things we are at liberty to do or not to do, as we may please. If we find it most 
convenient in a given research to reject negative and complex numbers and con- 
fine ourselves to positive numbers, we may do so, but we are expected to state 
our position clearly, then to maintain it. In the seventeenth and eighteenth 
centuries it was not clearly felt that, logically, one had this freedom to extend 
or to limit the number concept. Negative numbers came to be used freely, 
yet this extension of the domain was done with misgivings, which show them- 
selves in the names applied to them, such as false or defective nlumbers, numeri 
ficti. Still more pronounced was the feeling of discomfort toward bi or a + bi; 
such numbers were called imaginary, imposstble. It was felt that the validity 
of negative and complex numbers should be proved, not assumed; that the rules 
of operation with such numbers was a matter requiring demonstration. Hence 
the eighteenth century mathematicians, including even men of the type of 
Laplace, tried to prove the rule of signs in the multiplication of two negative 
numbers. The "proofs" given were futile; they rested on a syllogism without 

1 Leibnitii et Bernoullii Com. phil. et math., I, p. 10. 
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a major premise. This difference in the point of view must be borne in mind 
in the history of the extension of the logarithmic concept to negative and complex 
numbers. It will help to explain how it was that the controversy on this subject 
lasted for a whole century and reached well into the nineteenth century. 

Several of the eighteenth century mathematicians of the first rank, particularly 
Euler, used imaginaries freely; some other mathematicians looked upon the 
imaginaries with suspicion. Here and there an eighteenth century mathe- 
matician declaims loudly against the use both of the negative and the imaginary.' 
Interesting is the language used by Leibniz in 1702. He speaks of the imaginary 
factors of X4 + a4 as "an elegant and wonderful recourse of divine intellect, an 
unnatural birth in the realm of thought, almost an amphibium between being 
and non-being."2 Most wonderful was the result reached3 in 1702 by John 
Bernoulli4 (1667-1748). He explained the transformation of the differential 
adz + (b2 + Z2) into - adt + 2bt -1, by means of the relation z = (t - 1). 
b -1 + (t + 1) and thereby showed that the integral can be expressed 
as an arctangent and also as a logarithm. In this manner he pointed out a relation 
between the logarithm of an imaginary number and the arctangent. This 
logarithme imaginaire, as John Bernoulli called it, was so novel and so foreign to 
the thought of the time that it caused little comment. 

In a letter of the same year (1702), dated June 24 and addressed to John 
Bernoulli, Leibniz speaks of imaginary logarithms in connection with the problems 
of integration.5 There is danger of attaching too much importance to passages 
of this sort. To Leibniz and J. Bernoulli an imaginary often meant simply 
non-existence. If logarithms of imaginary numbers were believed to exist, 
nothing is here brought out as to the nature of such logarithms. 

The controversy on logarithms which agitated mathematicians for more than a 
century did not originate primarily in discussions of imaginary number, but 
rather in discussions of negative number. Are negative numbers less than 
nothing? If they are, then in a proportion 1: - 1 = - 1 : 1, the greater 
number is to the less, as the less is to the greater - an impossibility. This 
matter was discussed by many writers, including Leibniz, Newton, D'Alembert, 
Maclaurin, Rolle and Wolf. Leibniz published a paper on this subject in 1712.6 
He considered the above proportion impossible in fact, but maintained that 
such proportions may be used with the same advantage and safety with which 
other inconceivable quantities are used. Leibniz said that a ratio may be 
considered imaginary, when it has no logarithm. The ratio -1 1 has no 
logarithm; for, there would result log (- 1/1) = log (- 1) - log 1 = log (- 1). 

1 See Cantor, op. cit., Vol. 4, 1908, pp. 79-90. 
2 Leibniz, Werke, Ed. Gerhardt, 3. F., Bd. V, 1858, Berlin, p. 357: Itaque elegans et mirabile 

effugium reperit in illo Analyseos miraculo, idealis mundi monstro, pene inter Ens et non-Ens Am- 
phibio, quod radicem imaginariam appellamus. 

3Joh. Bernoulli, Opera, Vol. I, Laus. et GenevTe, 1742, p. 399. 
4For the sake of distinction, this John Bernoulli is frequently designated as John Bernoulli I. 
5 Leibnitii et J. Bernoullii Commerc. Phil. et math., T. II, 1745, p. 81. 
6 Acta Eruditorum, 1712, pp. 167-169; Werke, 3. F., Bd. V, Halle, 1858, pp. 387-389. 
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Leibniz declared that - 1 has no real logarithm; such a logarithm could not be 
positive, for a positive logarithm corresponds to a number larger than 1; the 
logarithm could not be negative, for a negative logarithm corresponds to a positive 
number, less than unity. The only alternative remains, therefore, to declare 
the logarithm of - 1 as not really true, but imaginary. He arrives at the same 
conclusion from the consideration that if there really existed a logarithm of - 1, 
then half of it would be the logarithm of the imaginary number a - 1, a con- 
clusion which he considered absurd. We notice in these statements of Leibniz 
a double use of the term imaginary: (1) in the sense of non-existent, (2) in the 
sense of a number of the type 1 - 1. 

On March 16 of this year, before the appearance of the article, Leibniz men- 
tioned the subject in a letter to John Bernoulli. That letter opened up a friendly 
controversy between the two men on the logarithms of negative and imaginary 
numbers. In their correspondence they debated this question for sixteen months. 
At that time they were the only ones interested in this question; in fact, they 
were the only ones to whom the problem of the existence or non-existence of 
logarithms of negative numbers had occurred. The controversy opens up a 
number of most interesting points and gives an insight into the algebraic concepts 
of the time as could not be obtained readily in any other way. For brevity 
let + n or + x indicate a "positive number," - n or - x a "negative number," 
log (+ n) the "logarithm of a positive number," log (- n) the "logarithm of a 
negative number," i or in, an "imaginary number." The following is a synopsis 
of the correspondence:1 

March 16, 1712. Leibniz to J. Bernoulli. This is the letter already referred to. L. says that 
- 1/1 is imaginary, since it has no logarithm. 

May 25, 1712. J. Bernoulli to Leibniz. B. rejects L.'s proof that the ratio 1 :-1, or - 1 :1 
is imaginary, for the reason that - x has a logarithm. We have dx : x =- dx: -x; 
hence, by integration, log x = log (- x). The logarithmic curve y = log x has therefore 
two branches, symmetrical to the axis Y, just as the hyperbola has two opposite branches. 

June 30, 1712. Leibniz to J. Bernoulli: L. repeats his argument that log (- 2) does not exist; 
for, if it did, its half would equal log V-2, an impossibility. The rule for differentiating, 
d log x = dx : x, does not apply2 to - x. In the logarithmic curve y = log x, x cannot 
decrease to 0 and then pass to the opposite side, since the curve cannot cut the Y axis, which 
is asymptotic to it. 

August 13, 1712. J. Bernoulli to Leibniz: The argument that log (- 2) does not exist, because 
log V/- 2 does not exist is invalid. I deny that log (V-2) is half of log (-2), even though 
it be true that log 1/2 = 12 log 2. The difference is that 1/2 is a mean proportional between 
1 and 2; / - 2 is not a mean proportional between - 1 and - 2. Just as log Vi X 2 = Y2 
log 2, so is log f-1 X -2 = ' log (-2). That is, log 1/2 = Y2 log 2 = M log (-2). 
In passing from + x to - x in a curve it is not necessary that the curve cut the y-axis. 
Witness the conjugate hyperbola whose abscissas are common to + and - ordinates, but 
never to vanishing ones. In y = log x, one branch of the curve passes into the other at 
infinity, when x = 0, in the same manner as in the conchoid of Nicomedes and other curves. 
1 Got. Gul. Leibnitii et Johan. Bernoullii Commercium Philosophicum et Mathematicum, 

Tomus Secundus, Lausanna et Genevae, 1745, pp. 269, 276, 278, 282, 287, 292, 296, 298, 303, 
305, 312, 315. 

2 Sed hlec regula, quod differentiale divisum per numerum dat differentiale Logarithmi, et quwevis 
alia de Logarithmorum natura et constructione non habet locum in numeris negativis, ut reperies, ubi 
demonstrare voles. 
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Sept. 18, 1712. Leibniz to J. Bernoulli: Logarithms are numbers in arithmetic progression, 
corresponding to numbers in geometric progression, of which one number may be 1 and 
another may be any positive number. Assume log 1 = 0 and log 2 = 1. In the geometric 
progression thus limited, - n can never be obtained, no matter how many third proportionals 
are formed. In the series 1, 2, 4, the mean proportional between 1 and 4 is both + 2 and - 2. 
But - 2 cannot be in the same geometric progression which contains + 2; that is, no value 
of e makes - 2 = 2e or e = log (- 2); hence there is no logarithm of -2, and a curve 
e = log x that is satisfied by x = 1 and x = 2, cannot be satisfied by x =- 2. Otherwise 
thus: If - 2 has a logarithm, then the half of this logarithm exists and is the logarithm of 
V/ -2. But I/ - 2 is an impossible number; hence, half of log (- 2) is impossible, and 
the whole, or log (- 2) is impossible. Another point: In logarithmic theory, ne or in is 
represented by log n * e, or log n: e; nn or n: n is represented by log n log n; n is repre- 
sented by log n; by what is - n represented? There is no mode of representation below 
the ones already named. Again: Granting for the moment that log (- 2) exists, it follows 
that log 1/ - 2 is half of it, for 1/ -2 is the mean proportional between + 1 and - 2; 
hence, log V - 2 = (log 1 + log (- 2)): 2 = Y2 log (- 2). 

Nov. 9, 1712. J. Bernoulli to Leibniz: B. says that he sees nothing in the last letter which proves 
the impossibility of log (- n). He admits that there is no transition from a (geometric) 
series of positive terms to one of negative terms, and so log (- n) does not exist in this case.' 
But negative numbers determine their own peculiar series starting with - 1, instead of + 1 
Thereby the same logarithmic properties follow for - n as for + n. He reiterates that 

O~~~ 1X 

Q s 

G F 

T 

H e 

log n = log - n. To show that y = log x has two branches, he uses the rectangular hyper- 
bola PQGpqg and lets SF and EH be proportional to the hyperbolic areas RSQP and REGP. 
Let PR and GE be constants and FS a variable. As S touches T, FS is infinite and the 
area is infinite. Now keeping to the same law of generation of the curve RFH, let the point 
S proceed to e (for what can hinder this?). The area upon Re is partly + and partly -, and 
equal to EP, when TE = Te. We have then EH = eh. Similarly, if Ts = TS, then 
sf = SF. Thus arises the branch hfr which, with HFR, constitutes the one logarithmic 
curve, just as the two branches of the hyperbola constitute one curve. If TR = + 1, 
Tr = -1, TS = + n, Ts =-n, then SF = log n, sf =log (-n). As SF = sf, we must 
have log n = log (- n). 

Jan., 1713. Leibniz to J. Bernoulli: Assuming 2e = x, if x = 1 then e = 0, if x = 2 then e = 1. 
When x = - 1, e cannot be assigned. 
1 Hoc unum efficis omnibus Tuis argumentis, ut ostendas non dari transitum ex serie numerorum 

affirmativorum in seriem negativorum, hoc est, assumpta unitate (nempe + 1) pro initio seriei numer- 
orum, nullum numerum negativum ex illa serie inveniri posse, adeoque nullos eorum logarithmos hoc 
casu existere; quod quidem non nego. Sed hoc non impedit, quominus numeri negativi suam 
peculiarem constituant seriem, assumta pro eorum initio unitate negativa, (nempe - 1). 



42 HISTORY OF LOGARITHMS 

Feb. 28, 1713. J. Bernoulli to Leibniz: If in Ve = x we assume x = 2 and e = 1, also x = 1 and 
e = 0, then truly e cannot be assigned when x = - 1. As these assumptions are arbitrary, 
change them so that x = - 1 when e = 0, then e can be assigned for any - x. 

April 26, 1713. Leibniz to J. Bernoulli: You say that my values for e and X in 2e = x are arbi- 
trary. You let x = I- and e -- 0. Mine is the most natural. Aside from that consider 
firstly that we cannot have both log n and log (- n), for if log (- 1) = 0, then log (- 1)2 = 

log 1 = 2 X 0 =0, and log 1/ - 1 = 0/2 = 0. That is, one and the same logarithm is 
obtained for + 1, - 1, and i. Secondly: On your assumptions 20 has an infinite number 
of meanings, for 20 will equal - 1, also + 1, - i, 4 -1, 81 - 1, etc. Unless 20 is 
many-valued, these must all be equal to each other. If 20 = + 1, then 20 is single-valued 
and no such difficulty arises. Thirdly: If Xe = - 2, X2e = + 4, but this transition from 
- n to + n you yourself reject. Fourthly: If log (- n) is real, then log 1/' -n is real; 
hence, impossible numbers would have possible logarithms. The assumption that only 
+ n have logarithms avoids this trouble. Fifthly: From the beginning you have admitted 
that we cannot have 2e = 1 and 2e = - 1 at the same time. But if you put 20 = - 1, then 
(20)2 = 20 = + 1. Hence 2e = 1 and 2e = - 1, for e = 0. This is contrary to your 
admission. 

All three things show that your hypothesis concerning log (- n) is unnatural, useless, 
and inadmissible. I have shown elsewhere that proportions cannot be formed, involving 
- n. If it be true that the two fractions + 1/- 1 and - 1/+1 are equal, observe that 
fractions are not the same as ratios. It is evident from all this that the very foundations of 
things analytical have been neglected thus far.' 

June 7, 1713. Bernoulli to Leibniz: What do you understand by natural? If that is natural 
which conforms with usage, then log (- n) is less natural than log (+ n). The first of your 
five objections to log (- n) is that some + n, - n, in would have the same logarithms. 
I admit only that log (+ n) = log (- n). The half of any logarithm is not necessarily the 
logarithm of the square root; it is rather the logarithm of the mean proportional between 
+ 1 and + n, or -1 and - n. The mean proportional between - 1 and - 1 is 
V - 1 X-1 + l/ + 1 or - / + 1. There is nothing absurd in this. Secondly: 
I deny that 2 = -1 = -1, etc. As just explained, 2 = v-1 X-1 and 
= v -1 X-1 X-1 X-1, etc. All these radicals equal V + 1 or ee 1. There is 
no discord in these results. Thirdly: You say that if xe = - 2, then X2e = + 4. The 
logarithmic curve shows this to be untrue. Twice log (- n) is not log n2. The third pro- 
portional of -n is obtained from - 1 :- n = - n: x. Hence if Xe =- 2, then X2e = 

- 2 X - 2 + - 1 = - 4. Consequently there is no crossing from -n over to + n. 
Fourthly: My definition of the mean proportional of - n does not lead to the absurd result 
that in has a possible logarithm. Fifthly: If 20 = - 1, then 22 . o is not = + 1, but to 
- 1 X - 1 :- 1 = - 1. Hence the absurd result does not follow that 20 is at the same 
time + 1 and - 1. 

June 28, 1713. Leipniz to J. Bernoulli: I have no time to disprove your objections to my doctrine 
which makes log i impossible, the double of impossibles impossible, log n the double of log v n. 
If you assume logarithms in which this is not so, that is nothing to me. I call the more natural, 
not that which is more customary, but that which is nearer to nature and the more simple. 

July 29, 1713. J. Bernoulli to Leibniz: You do not deny that the assumption + 1 is arbitrary, 
and that - 1 is permissible. According to the latter, log (- 1) = 0. From this follows 
all I have previously said about log (- n). 

It is easy to see that Leibniz and J. Bernoulli could not come to an agreement 
on log (- n), as long as they did not agree on the definition of "mean pro- 
portional" and "third proportional," when applied to negative numbers. There 
is no need on our part to enter into a minute discussion of the validity of the 
arguments presented. Bernoulli's argument involving infinite areas between 
the hyperbola and its asymptotes was repeatedly bombarded during the eigh- 
teenth century, but was never hit at its vulnerable point, namely the assumption 

I Ex quibus intelligitur, in ipsis rei Analyticce fundamentis aliqua adhuc neglecta fuisse. 
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that o - o = 0.1 It is interesting to note that logarithms are part of the 
time connected with the two progressions, as in Napier's definition of a 
logarithm, but most of the time with the exponential concept as expressed in the 
exponential notation of the present time. Leibniz makes few appeals to ge- 
ometry; J. Bernoulli uses curves repeatedly, as if more could be gotten out of a 
figure than is put into it. 

Leibniz insists that log (- 1) and log (I-in) do not exist. Non potest 
dari Logarithmus i - 2. Non-existence is based on inconceivability. We 
shall see later that Euler puts a different intepretation upon Leibniz; he repre- 
sents Leibniz as contending that log (- 1) is imaginary, not as non-existing, 
Leibniz died three years after the close of this controversy. This correspondence 
between him and John Bernoulli during the years 1712 and 1713 was not pub- 
lished until 1745. Not until then did the logarithms of negative numbers engage 
the attention of mathematicians in general. 

Meanwhile there are other researches demanding our attention. In an 
article in the Philosophical Transactions of London, published in 1714, Roger 
Cotes develops an important formula which in modern notation is 

if = log (cos 0 + i sin 42). 

In 1722, after the death of Cotes, this article was republished in his Harmonia 
mensurarum. He introduces as the "measure of a ratio" (mensura rationis) 
the logarithm of the ratio, multiplied by a constant or modulus. As Braunmiihl 
points out, this "measure of a ratio" was long lost sight of, but was introduced 
anew in the nineteenth century. We have already called attention to the fact 
that Cotes himself was anticipated by Edmund Halley in this mode of meas- 
uring ratio. 

Without stonning to exnlain how "the measure of the ratio" fimires in Cotes's 
1 Proofs involving the comparison with each other of infinite areas in a plane appeal to our 

intuition with great force. They were accepted as valid by some writers of the nineteenth century 
as well as of the eighteenth century. Louis Bertrand based upon such comparison his proof of 
Euclid's parallel-postulate. See L. Bertrand, Developpement nouveau de la partie elementaire des 
mathematiques, T. II, a Geneve, 1778, pp. 19, 20. This proof was accepted by Johann Schultz. 
See J. Schultz, Versuch einer genauen Theorie des Unendlichen, Konigsberg und Leipzig, 1788, 
pp. xi-xv. Similar reasoning was endorsed by Johann Heinrich Lambert. See Lambert, Deutscher 
gelehrter Briefwechsel, Bd. I, Berlin, 1781, p. 118, in a letter dated Feb. 2, 1766. Substantially 
Louis Bertrand's proof was published anonymously in Crelle's Journal in 1834. It was accepted 
as valid by A. De Morgan. See De Morgan on "Infinity and the Sign of Equality" in Trans. 
Cambridge Phil. Society, Vol. XI, Part I, p. 158. It was translated and published by W. W. 
Johnson in the Analyst (Des Moines, Vol. III, 1876, p. 103). See Cajori, Teach. u. Hist. of Math. 
in U. S., 1890, p. 379. 

2 That Cotes derived this relation was pointed out by Timtschenko in his History of the 
Theory of Functions, 1899 [Russian], pp. 519-522. It receives emphasis also in an article by 
A. v. Braunmuhl in Bibliotheca mathematica, 3d S., Vol. V, 1904, pp. 355-365. How it happened 
that so important a theorem should remain in the writings of Cotes for 185 years, without being 
detected, may perhaps be inferred from Cotes' mode of statement: "Nam sit quadrantis circuli 
quilibet arcus, radio CE descriptus, sinum habeat CX sinumque complemendi ad quadrantem 
XE; sumendo radium CE pro Modulo, arcus erit rationis inter EX + XC v -1 et CE mensura 
ducta in V/ -1." 
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derivation of his formula for i<p, his process may be roughly outlined in modern 
notation as follows: The area of the surface generated by an arc of the ellipse 
b2X2 + a2y2 = a2b2, when revolved around the Y-axis and taken between the 
limits y = 0, y = y, can be expressed in two ways, namely, 

a2_-_b_ b2 ( a2- b 2+/ a2_-b 
7r 

y 1+ b4 y + 
- b2 \log a Yb4 + 4 y2 

b2 - a b2_ .S = a7r y Y1 4_ b_ y2 + a2 f 
. 

~ ~ 
. .2 where s - b2 - a2 . a2- b2 - +2b2 

where s'ln p = Y=Y COS + b4 Y2 Comparing 

the two expressions for S, we have 

iz = log (i sin V + cost). (1) 
While Cotes was anticipated by John Bernoulli I in establishing a relation 

between the logarithm of an imaginary number and a goniometric function, Cotes, 
in turn, anticipated the continental mathematicians in the derivation of if- 
log (cos sp + i sin (p). It was much later, in a letter of Oct. 18, 1740, that Euler 
stated to John Bernoulli I that y = 2 cos x and y = e+?x'-V + ecxV$}/ were both 
integrals of the differential equation d2y/dx2 + y = 0; that the two integrals 
were equal to each other, since both could be expanded into the same infinite 
series. Euler makes remarks from which it follows that he knew at that time 
the corresponding exponential expression for sin x.1 Both expressions are 
given by him in Miscellanea Berolinensia 1743 and again in his Introductio in 
analysin, Lausanna, 1748, Vol. I, p. 104, where he gives also the all-important 
formulse, e =Cos v + CfO Vi sin v, er-1 =cosv 1 sin v. From 
Cotes's formula ifp = log (cos VI + i sin AV), given in 1714 and 1722, to Euler's 
exponential form is an easy step, yet over a third of a century intervened between 
the first publication of the one and of the other. It is interesting to observe 
that neither Cotes nor Euler appear to hesitate in, or to recoil from, the use of 
log (cos VI + i sin Vt), involving the logarithm of complex numbers. Moreover, 
'neither Cotes, nor Euler in his Introductio, make any attempt to use this relation 
in the discussion of the theQry of logarithms of complex numbers. Both were 
aware of the periodicity of the trigonometric functions. Had Cotes applied the 
idea of periodicity to icp = log (cos 41 + i sin VI) he might have anticipated Euler 
by many years in showing that the logarithm of a number has an infinite number 
of different values. 

The theory of logarithms of negative numbers was incidentally touched by 
Euler very early, in his correspondence with John Bernoulli I. The letters which 
passed between these men in 1727-1731 have been in the possession of the Stock- 
holm academy of sciences and have for the first time been published in full by 

' Bibliotheca mathematica, 2d S., Vol. 11, 1897, pp. 48-49. 
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G. Enestrom in 1902.1 A translation from the original Latin into German was 
brought out by E. Lampe.2 It will be remembered that Euler was a pupil of 
John Bernoulli I and had followed the two sons (Daniel and Nicolaus) of John 
Bernoulli to St. Petersburg. Euler was then 20 years old; John Bernoulli was 60. 
The following is a synopsis of the correspondence, in so far as it bears on 
logarithms: 
Nov. 5, 1727. Euler to J. Bernoulli: The equation y = (- 1) is difficult to plot, since y is now 

positive, now negative, now imaginary. It cannot represent a continuous line.3 
Jan. 9, 1728. J. Bernoulli to Euler: If y = (- n)>, then ly = xl (- n) and dy/y = dx l(- n) = 

dx * l(+ n); for dl(- z) = - dz/- z = + dzl+ z = dlz. Integrating, ly = xln, and 
y = nx. Hence y = ( 1)z becomes x1 = 1, or y = 1. 

Dec. 10, 1728. Euler to J. Bernoulli: I have arguments both for and against lx = I(- x). 
If Ixx = z, we have 2z = 1V/ xx. But v xx is as much -x as + x. Hence Y2z = lx = 
(- x). It may be objected that xx has two logarithms, but whoever claims two, ought to 
claim an infinite number.4 Argument against: From the equality of the differentials we 
cannot infer the equality of the integrals. Moreover, l(- x) = lx + l(- 1); hence 1(- x) = 
lx only if 1(-1) = 0. Again, if lx = l(-x), then x = -x and I/-1 = 1, but I rather 
think the conclusion from the equality of the logarithms to the equality of the numbers 
cannot be drawn. Your expression for the area of a circular sector5 of radius a, viz. aa/(41/-1) 
Xl(x+y / - 1)/(x-y V/-1), becomes for a quadrant, x being then 0, aa/(4V/ - 1) 1(- 1). 
Hence, if 1(- 1) = 0, we must have / - 1 = 0 and even 1 = 0. Most celebrated Sir, 
what do you think of these contradictions? 

April 18, 1729. J. Bernoulli to Euler: When I say that lx = 1 - x, it is to be understood that 
- (x) is meant, not 1(- x). Thus, 1 - (x)' is real, but 1(- xi) is imaginary. The area 

of the circular sector is 0, when x = 0, however much it ought to be equal to the quadrant. 
Let the constant Q be a quadrant, then we may write the area of the sector generally = 
aa/(4V l1)t(x+yV-p.1)/(xy/- 1) +nQ, so that, the first term vanishing when the sector 
becomes a quadrant, n may be so chosen as to make nQ any multiple or submultiple of the 
quadrant we need. For a semi-quadrant we have aa/(41/ - 1)1 / - 1, which is 0, since 
lv/ - 1 = 0. Here we must take n = 1. 

May 16, 1729. Euler to J. Bernoulli: The difference between_1 - (x) and 1(- x) is not clear to 
me. The expression 4a/(4/ -1)l(x + yV - 1)/(x-yV - 1), thought to be constant, appears 
to me to be increasing, since x = 0 exhibits a vanishing sector. That nQ ought to be added, 
I do not as yet see. If n can be 12, it can be V4 and any number. It would be superfluous to 
show that aa/(4V - 1)l(x + yl/ - 1)/(x-y - 1) must express a sector, if nQ alone 
were sufficient to represent any sector whatever. Neither of us can afford to run into 
paralogisms. 

In this correspondence between John Bernoulli I and L. Euler, Bernoulli 
holds the view that log n = log (- n). This is the same formula which he 
defended 16 years earlier, in letters to Leibniz. Now, as then, Bernoulli argues 
from the equality of two differentials to the equality of the two resulting general 

'See Bibliotheca mathematica, 3d S., Vol. 4, 1902, pp. 344-388. Information on these letters 
is given also in the same journal, 2d S., Vol. 11, 1897, pp. 51-56; Vol. 13, 1899, p. 46. 

2 Festschr. z. Feier d. 200. Geburtstages L. Eulers, Leipzig and Berlin, 1907, pp. 119-137. 
3 In this synopsis we follow the notation used in the letters except in our use of slanting frac- 

tional lines and parentheses necessitated by them. 
4Posset quidem objici, xx habere duos logarithmos, sed hoc qui asser[ere vult] infinitos adjudicare 

deberet. 
6 To facilitate the derivation of this expression, we note that 

f (a2 - X2)- dx = -if (X2- a2)- dx = -i log (x + X2 -a2) + c 
=-i/2 log (x + iy)2/(x2 + y2)-i/2 log a2 +c =-i/2 log (x + iy)/(x-iy)-i/2 log a2+ c. 
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integrals. In his argument on sectorial areas (Apr. 18, 1729) he confuses definite 
integrals with general integrals. His distinction between 1 - (x)l and l( - x1) 
is not made clear. Perhaps he means simply that l( - x') shall signify l( -), 
when x itself is positive. 

Euler's argument, that eZ12 = x yields log x = log (- x), involves an inter- 
esting point. When we write ab = c and define b = loga c, a and c are taken to 
be both single-valued. Euler drops this restriction on c. He takes ez12 - 

4 

so that the definition implied in his mode of procedure, viz. z/2 = log (=i= x), 
really amounts to two definitions, z/2 = log x and z/2 = log (- x). Now there 
is no objection, a priori, to two distinct definitions. In vector analysis we have 
at least two definitions of multiplication, yielding a vector-product a X b, and a 
scalar product a * b. The question to be considered is, can the two definitions 
be used side by side? Do the two fit together so as to give a non-contradictory 
logarithmic theory of complex numbers? The conclusion is drawn from the two 
definitions and the ordinary rules of operation, that all roots of + 1 and - 1, 
in other words, all complex numbers of unit modulus, have zero for their logarithm. 
This is certainly very simple, also quite useless. Previous to the Euler-Bernoulli 
correspondence no real contradictions had been pointed out in this theory. It 
was Euler who gave it a death blow by pointing out that log 01-1=0 was in 
conflict with the formula 51 - 1 ir= 21 - 1, resulting from J. Bernoulli's 
accepted expression for the area of a circular sector. The blow dealt by Euler 
was not considered fatal at the time. Definite integrals were as yet indefinitely 
comprehended. J. Bernoulli's theory of logarithms continued to find defenders. 
Euler made another important remark in his letter of December 10, 1728; he 
touches for the first time the truth that log n has an infinite number of values. 
But he does not pursue this matter further at this time. 

THE UNION OF THE LOGARITHMIC AND EXPONENTIAL CONCEPTS. 

The possibility of defining logarithms as exponents was recognized in the 
seventeenth century by John Wallis, but not until about 1742 do we find a 
systematic exposition of logarithms based on this idea. About this time it came 
to be recognized that involution has two inverses, different in kind, namely, 
evolution and logarithmation; in the first inverse we assume, in ab = c, b and c as 
given and find a, in the second inverse we assume a and c as given and find b. 
Tropfke1 names William Gardiner as the first to give the new definition of 
logarithms and to base the theory of logarithms upon it. It is given in the 
introduction to Gardiner's Tables of Logarithms, London, 1742. The definition 
is as follows: "The common logarithm of a number is the Index of that power of 
10 which is equal to the number." It is practically certain that this definition 
is not due to Gardiner, but to William Jones. "The Explication of the Tables," 
says Gardiner, ". . . I have collected wholly from the papers of W. Jones, Esq." 
Maseres,2 who reprinted this "Explication" in 1791, attributed it entirely to 

I Tropfke, op. cit., Vol. II, 1903, p. 142, note 576. 
2 Maseres, Scriptores logarithmici, Vol. II, London, 1791, p. 1. 
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Jones. Prof. W. W. Beman informs me that Jones's exposition of logarithms, as 
given in his Synopsis palmariorum matheseos, 1706, was based on Halley's treat- 
ment of 1695, but a posthumous paper by Jones, published in the Philosophical 
Transactions for the year 1771, gives the new definition. Whether Jones printed 
this definition before Gardiner is still undetermined. The one whose influence 
was greatest in emphasizing the new view was Euler, who, in his Introductio, 
1748, Chap. VI, ?102, gives the definition involving exponents. In this same 
chapter Euler gives an exposition of negative and fractional exponents and calls 
attention to the multiple values of a number having a fractional exponent, an 
explanation seldom found in mathematical treatises of that time. That the new 
definition of a logarithm was in every way a step in advance has been doubted 
by some writers. Certain it is that it involves internal difficulties of a serious 
nature. 

[To be continued.] 

MINIMUM COURSES I N ENGINEERING MATHEMATICS. 

By S. EPSTEEN, University of Colorado. 

Introduction.-This paper was suggested by a number of inquiries as to the 
nature and content of the course in engineering mathematics at the University 
of Colorado. This course is based on three entrance units in Mathematics, and 
consists of algebra, trigonometry, analytic geometry, the calculus, and least squares 
as prescribed courses and differential equations, higher calculus, vector analysis, 
Fourier's series and other advanced courses as electives. 

The following outlinei is not that of a complete course in engineering mathe- 
matics, nor even the average course, but, as the title of the paper indicates, the 
minimum course. The average course is based on this minimum but contains 
more material, both theoretical and applied. This outline gives an irreducible 
minimum. A course falling below this standard may be a good trade school 
course, it may be a most useful and practical course in many respects, but it is 
not a course in engineering mathematics. 

Mathematics and Engineering.-Engineering mathematics is in no sense trade 
school mathematics or practical arithmetic. A trade school may have little use for 
mathematics as a science, but the engineering college demands a knowledge of 
principles as well as facts. This is particularly noticeable in the recent advances 
in the profession of civil engineering which have been along the lines laid down 
by Rankine and not by Trautwine. To the engineering student mathematics is 
as essential as anatomy is to the surgeon, as chemistry is to the apothecary, as drill 
is to the army officer. The professor of engineering is certainly on firm ground 
when he takes the stand that the mathematics taught to his students should not 
be too abstract on the one hand nor too concrete on the other. If the subject 
matter is too abstract it is unintelligible or uninteresting to the beginner; if it is 

1 The Editors, while in sympathy with the broad purposes of this paper, share no responsi- 
bility for the details of the suggested programs. 
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