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analysis of atmospheric wave forms [8, 9], it is known that the attenuation rate does not vary like -yff except possibly at frequencies near 1 kc. Actually, the attenuation rate decreases with increasing frequency in the range from about 2 to 18 kc and thereafter increases. A behavior of this kind is highly suggestive of a Brewster angle effect. Such a proposal was first made by Namba [10] as far as this writer can ascertain. It thus appears than the ionosphere at vlf is behaving more like a magnetic wall (tangential H near zero) rather than an electric wall (tangential .Enear zero) as postulated by Watson, Bremmer, and Schumann. 
Contributions to the waveguide mode concept have also been made by Budden [11 to 13 inch] who unlike the early workers did not assume a highly conducting reflective layer at the outset. His model was a vertical electric dipole source in the space between the surface of a flat perfectly conducting ground and a sharply bounded homogeneous ionosphere. Various extensions and generalizations have been made by AFpert [14, 15], Lieberman [16], Wait [17 to 22 inch], Howe [23], and Friedman [24]. Their work is referred to from time to time in the text. It is the purpose of the present paper to present a unified treatment of the mode theory of vlf propagation. The results include much of the above work as special cases. In fact, in some instances, the analysis follows the work of Budden, Bremmer, and Rydbeck rather closely, although many new results are derived. While no attempt is made to present numerical results, limiting cases and simplified forms of the general solutions are discussed in some detail. An extensive bibliography is included in this paper for the convenience of those who are more interested in related numerical results and experimental data. It is intended that this paper will serve as a theoretical basis for subsequent papers by A. G. Jean, W. L. Taylor, A. D. Watt, and the author. 
2. Basic Concepts 
To introduce the subject a very simple model is chosen. The earth and the ionosphere are represented by perfectly conducting planes. In terms of a cylindrical coordinate system (p, <£, z) the ground surface is the plane 2—0 and the lower boundary of the ionosphere is the plane z=h. The source is now considered to be a vertical electric dipole located on the ground. The electric field observed at some other point on the ground plane has only a vertical component and can be deduced by considering the images of the source dipole. These images are located at z=±2h, ±4A, ±6/i, etc., and all have equal sign and magnitude, because of the assumed perfect conductivity of the bounding walls. These images will always direct a wave broadside since the radiation from each image is in phase. At a distance which is large compared to A, this field can be calculated by replacing the line of dipole images by a continuous line source carrying an equivalent uniform current Ia. This current is the average current along the z axis and is given by 
j      ds 
Ia  hl 
in terms of the height ds of the dipole and its current /. Now the field of a line source of current is well known and thus 
EzJ-f^ Hp{kp) =^p H^ (kp) (2.1) 
where H^2) (kp) is the Hankel function of the second kind of argument kp, p. is the permeability of the space, oo is the angular frequency, and k = 2-ir/\. When p^> X, the Hankel function can be replaced by the first term of its asymptotic expansion and this leads readily to 
E*~%T^eiT/*e~ikp <2'2> 
1 h(Xp)2 
where ry=(iu/e)i^l207r. As mentioned above, this field corresponds to the radiation directed broadside so the rays are parallel to the bounding walls. However, there will be other angles where the rays emanating from each of the dipoles in the line of images are also in phase. 
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Such a resonance condition exists when 
2hC=n\ (2.3) 
where C is the cosine of the angle subtended by the rays and the 2 axis and n is an integer (see fig. 1). It is seen that for each value of n there are two families of rays which have the same radial phase velocity (i.e., = c/S) but with opposing vertical phase velocities (i.e.,= ±c/C). Again the radiation of these sets of waves (i.e., modes) can be imagined to originate from an equivalent line source. The strength of this line source is IS where 8 is the sine of the angle subtended by the rays and the vertical direction. To obtain the resultant vertical field, this must be again multiplied by S. Consequently the resultant field of all the families of rays or modes is obtained by summing over integral values of n from 0 to 00 to give 
E_mlte £ ^slR{f {kSnp) (2 4) 
where €0=1, en=2(n=l, 2, 3 . . . ) and Sn=(l — CI)* and Cn=n\/2h. The term n=0, corresponding to mode zero discussed above, is only included once in the summation, whereas the higher modes are included twice.    In the far field, this expression for the field reads 
E*~Jv^eiv/*     S      enSVe-^np. (2.5) 
2h(\p)*        «=o,i,2,... 
=h 
z = o 
arc cos C 
(image) 
Figure 1.    Depicting ray-geometry corresponding to  the first mode between parallel plates; for resonance, X = 2/iCi. 
Up to this point the bounding walls have been assumed to be of perfect conductivity: The reflection coefficients for the rays are always +1. Another simple case is when the upper boundary has a reflection coefficient of — 1 corresponding to a perfect magnetic conductor, and the lower boundary still has a reflection coefficient of +1 corresponding to the more common perfect electrical conductor. For this situation the images are now located at z= ±h, ±2h, . . . but now they alternate in sign. It may be observed that there is no coherent family of rays directed broadside. This would have been the zero-order mode. The resonance condition for the modes is now 
2hC=(n-%)\ (2.6) 
where n=l, 2, 3, ...  .    The corresponding expression for the vertical electric field is thus given by 
Ez=z^Ids       £     S2Hw{kSnp) (2.7) 
«l      ?!= 1,2,3, . . 
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where the summation starts at n=l and includes all positive integers.    In the far field 
E*~j!7^eiT/i     ^     Sl^e-^no. (2.8) 
tl(\p)/2 72=1,2,3,   .   .   . 
In the foregoing discussion the observer and the source, which is a vertical electric dipole, are located on the ground plane. The above results are easily generalized to a finite source height, z0j and a finite observer height, z, by inserting the factor cos (kz0Cn) cos (kzCn) inside the summations of eqs (4), (5), (7), and (8). This can be verified by returning to the image picture and noting now that they are located at z=—h, ±(2hJrz0), ±(2h—z0), ±(ihJrz0)f ±(4h—z0), .... It may also be observed that the cos (kzCn) when replaced by [exp(ikzCn) + exp (—ikzCn)]/2 can be identified as a family of upgoing and downcoming rays within the guide. 
The important modifications of the preceding formulas as a result of imperfect reflection can be obtained by a rather simple physical argument. The complete treatment requires a more mathematical approach which is to be described later on. 
The reflection coefficient for a ray incident on the ground plane at an angle (whose cosine is C) is denoted Rg(C). The corresponding reflection coefficient for the upper boundary which is the lower edge of ionosphere is denoted Ri(C).    The resonance condition now has the form 
Rg(C)Ri(0)e~i2khc=e-i27rn (2.9) 
which reduces to eq (3) if the reflection coefficients are both +1 and reduces to eq (6) if one reflection coefficient is +1 and the other — 1. Physically, the above more general form can be the condition for a ray to traverse the guide twice, be reflected at each boundary, and yet still suffer a net phase shift of 2 w n radians where n is an integer. Since Rg(C) and Ri{C) may be complex and less than unity the value of C (i.e., Cn) which satisfies the resonance equation may also be complex. The angle of incidence of these rays in the guide are thus also complex. The corresponding value of Sn is also complex and this results in attenuation of the wave in the radial direction. In fact, the attenuation constant is minus the imaginary part of kSn in nepers per unit distance. 
When the angle or its cosine C must be complex in order to satisfy a resonance equation, the resulting waves are damped. The numerical solution of such a complex resonance equation is quite difficult, in general, since it is not usually possible to obtain an explicit expression for C in terms of known parameters. This aspect of the problem is discussed in a later section. 
3. Formulation for Flat Earth Case 
3.1. Vertical Dipole Excitation 
It is now desirable to formulate the problem in a more definite fashion. A vertical electric dipole of moment / ds is placed in a homogeneous plane layer bounded by two plane interfaces (see fig. 2). The lower interface is at z=0 corresponding to the surface of a homogeneous ground of conductivity ag and dielectric constant eg. The upper interface at z=h is the lower edge of a homogeneous ionosphere which for the moment is assumed to be isotropic and has effective electrical constants <rt and et. The fields in these regions can be derived from a Hertz vector which has only a z component, IIz.    Thus, for h^z^O 
(3.1) 
	z^dpte11* 
	
	H,=0 

	E*=0 
	
	rr             ■       ™> 
HA,=—iea)^— dp 

	E,=(k*+^ 
	u 
	Hz=0 


where &=(eJu)2a>=27r/\. 
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z=h / / / / / / 
(ionosphere) 0-\ €j Ho 
z = o -^ 
=///-///r//. r /.', 
(air) *o ho 
(ground) 
^g ^g        Mo 
Figure 2.    Cylindrical coordinate system for the vertical dipole between the two plane interfaces. 
Similar expressions are applicable for the regions 2>A and 2<0 where the z directed Hertz vectors are denoted n^ and U{zg), respectively, and the corresponding wave numbers are kt and kg, respectively. The formal solution of this problem is obtained in a straightforward fashion by requiring that the tangential field components Ep and H+ are continuous across the two plane interfaces.    An equivalent statement of these matching conditions is as follows: 
k2U2=k2gUz(gy 
ML   mz(g) 
dz 
dz 
	k2Tlr
	=*?ni<)

	dz = 
	"  52    _ 


for 3=0, 
for z = h. 
(3.2) 
(3.3) 
To facilitate the solution, the primary excitation resulting from the source dipole is represented as a spectrum of plane waves. This well-known representation, for the primary Hertz function, is given as follows:  [25] 
II 
(p). 
Mexp {-ik[p2+(z~z0)2]i} =Mik [p2+(s-S„)2]* :   2 
j> 
(kSP) exp [-ikC\z
\dC 
(3.4) 
where M=I ds/(4wio)e) and S=(l — C2p. The integration variable 0 can be regarded as the cosine of the angle of incidence of the plane waves in the spectrum, r is the contour of integration and it extends from — oo along the negative real axis to the origin, then out along the real axis to +00. It should be noted since C can be greater than unity complex angles in the spectrum occur. The above form for the primary excitation then suggests that the resultant Hertz function for the three regions can be written in the respective forms 
(I) nz=n<*) + f [A (C)e~ikCs+B (C) e+ikcz] H^ kSp) dC 
for Q^z^h; 
(II) 
for 2^0; and 
an) 
ni*>= { G(C)e+lkf'*H!?>{kSp)dC If <« = [ I(C)e~ <W#<» (kSP)dC 
(3.5) 
(3.6) 
(3.7) 
for zy>h.    In the above, it can be verified that these Hertz functions satisfy the appropriate wave equation subject to the conditions that 
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(3.8) 
where 
N z^+i^y and N (°i+iwy. 
g    \    leu     / V    lew     J 
Terms containing exp (—ikgCgz) and exp (iklCiz) are not permitted since they would violate the Sommerfeld radiation condition at |2|->». 
The form of the unknown function A(C), B(C), 0(C), and 1(C) can be obtained explicitly by using the four equations of continuity. This purely algebraic process is easily carried out and further details are omitted. The resultant Hertz function for the air region is explicitly given by 
TIt=~jrF(C)H^ (kSP)dC (3.9) 
where 
(eiWz+ Rge-ikCz) (eikc(h- go> + R^-^-z^) , 
(C)" eiWh(l-RgRie~2ikW) [      } 
and 
AT P—P Br=Bt(C)=^+^ (3.11) 
AT P—P 
It can be immediately noted that the integrand has poles where 
This is the (complex) resonance equation obtained in the previous section by intuitive reasoning. The integral may be evaluated by using function-theoretic means.    The contour is transformed to the S plane.    Thus eq (9) becomes 
u_ikM C F{C)Hi2) {kSp) §d£ (3 13) 
where the contour r may now be taken as the real axis from — <» to + °° in the S plane. 
The contour is now closed by semicircles in the lower half-plane as indicated in figure 3. Because of the branch point at S= +1 and its associated branch line drawn vertically downward, the closing contour runs from one Riemann sheet to the other in the manner indicated. After making two circuits the contour closes on itself. The contours are indented at other branch points in the manner shown for B on the figure. These branch points are located well below the real axis (i.e., imaginary part of £>>1) and the corresponding branch cut integrations lead to waves which are heavily damped provided 
and£P|Al-l]»l. (3.14) 
Now the line integral around the complete circuit in the two sheeted Riemann surface is equal to — 47ri times the sum of the residues of the poles of the integrand. The poles which occur in pairs are located on both Riemann sheets. For highly conducting walls, a number (at least one) is located just below the real axis between the origin and the branch point at -f 1. The remainder are located along or near the negative imaginary axis. The contribution from these latter poles is very small and they correspond to the waveguide modes beyond "cut-off." 
The contribution along the semicircles is seen to vanish if the radius R approaches infinity. This is assured by the presence of the Hankel function Ho2)(kSp) which is exponentially decreasing in the lower half-plane of S.    Consequently, each of the two integrations along the 
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        Figure 3.    S 'plane. Branch point; x, poles. 
real axis are approximately equal to — 2t% times the sum of the residues at S=Sn. When the integral is expressed in the original C plane the residue series may be regarded as the contributions from the poles at C=Cn which for n=Q, 1, 2, . . . are in the first quadrant and for n= — l, — 2, — 3,  . . . are in the third quadrant.    This leads to 
Uz = wkM^2 
1 
H?> (kS„P) 
(3.15) 
where the square bracket term is the residue of the function /''('') at the pole C=Cn.    Carrying out the differentiation and making use of the resonance condition 
leads readily to 
where 
Rt(Cn)Bt{Cn)e
?»=1 
n^ ^g    Hn){kSnp) yn(go) fn(z) 5n{n 
lb       n = — co 
r     wtt(C)iig(C)]/i>c-\-1 
"(   '     L 2khRi(C)RK(C) 
o=cn 
where 
/.(«o 
ettcnl+Rg(Cn)e-,kC«' 
(3.16) (3.17) 
(3.18) (3.19) 
2[Rg{Cn)V 
and/„(20) has exactly the same form. 
When the walls are perfectly conductingJBi((7)=i?y(C0 = l,the factor 8n(C) becomes unity if . and becomes % if n = 0, and/n(s)=cos kCnz.    The above expression can then 
w=l, 2, 3 
y *"y ^j 
be written 
iirlVf  °° 
nz = ~ S tnHr (kSnP) cos (A:C„2o) cos (kCnz) 
fl     n=0,l,2, . . . 
(3.20) 
where e0=l, en=2(n?£0).    The corresponding value of the electric field component Ez can be expressed 
,=(f+|J)iI,=-^^      f)      e»SSff«'(fcS,p)co8 (kCnz0) cos (kCnz) (3.21) 
#,= 
4A 
w=0,l,2, 
which is in agreement with eq (2.4) obtained from physical intuitive reasoning. 
The extension to the case when the source is a vertical magnetic dipole is simple. Formally the above results are still valid if I is replaced by the magnetic current K. Ez then becomes Hz and the field is essentially horizontally polarized. The reflection coefficients Rg(C) and Rt(C) are to be replaced by their counterparts for horizontal polarization. 
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Explicit^ these are given by 
C-NtCt 
''C+N.C, and 
Ri(0 = n , Zn (3-22) 
Ew=wB; .     (3-23) 
It may be noted, since R( — C) R(C) = 1 where R is an}^ of the reflection coefficients Riy Rg, Rt, or Rhg, that for negative values of n 
^-(n4-l)*==       ^ n
-(-00 c» 
It then follows that the summations S • • • may be replaced by 2 Xj • • • everywhere 
— oo " 0 
since 8n(C) = 8n(—C). 
For convenience in numerical computation, it is convenient to express the field components as a ratio to the quantity 
E0=i(r}l*)Ids(e-ik»)/p        (^120tt). (3.24) 
E0 is the field of the source at a distance p on a perfectly conducting ground. Thus for both the source and the observer near the ground it is not difficult to show by means of eqs (1), (17), and (19) that 
where 
where 
and where 
Ez =WE0 
W ^-iir £ eik> S hSim»(kSnP) (3.25) 
Ep =SEq 
S  et£i«a'j:dJ3JBp(kS1u>) (3.26) 
H^TE0/r, 
T^-tt £ e**> S 6.SnHl*> (kSnP). (3.27) 
In the above it has been assumed that |A^|2>>1. 
When lcp^>^>lj corresponding to the "far-zone," the above expressions may be simplified since the Hankel functions may be replaced by the first term of their asymptotic expansion.2 
2 The relevant expansions are 
wK£)*~S[i-£+5fe---] 
„?,(T)s(|)»e-^[1+i|__H_...]_ 
160 
This leads to the compact result 'W 
s 
T 
(pA)!/[x-t] 
(A/X) 
2«, 
n = 0 
-Sl/Ng 
si 
g-i'2TrSnp/\ 
(3.28) 
which is valid for p>>\. As expected, the ratio of W to T for a given mode is Sn which follow order or grazing modes is of the order of unity. The ratio of S to T for a given mode is ~l/Ng which is ver}^ small compared to unity; in fact, it vanishes for a perfectly conducting ground as it must. 
3.2. Horizontal Dipole Excitation 
The previous section contains the formulation for a vertical dipole source. The corresponding treatment for a horizontal dipole is also quite straightforward although the lack of symmetry increases the complexity. Often in the4 radio propagation literature the statement is made that the fields of a horizontal electric dipole are the same as, or proportional to, the fields of a vertical magnetic dipole at the same location. This is only true broadside to the horizontal dipole where the field is purely TE (transverse electric) or horizontally polarized. For other directions, the field has a TM (transverse magnetic) component corresponding to vertical polarization. The modes corresponding to the TM waves may have much smaller attenuation than the modes of the TE type and thus it is desirable to formulate the problem directly with a horizontal dipole source. 
As in the previous section the earth and the ionosphere are assumed to be bounded by parallel planes separated by a distance h. Choosing a rectangular coordinate system {x} y, z), the dipole is located at z—zQ and is parallel to the x axis (see fig. 4). 
The solution for a horizontal dipole over a homogeneous flat earth with no ionosphere (i.e., h-^co) was obtained by Sommerfeld many 3^ears ago. The generalization for the two interfaces is quite straightforward. A Hertz vector is introduced which has both an x component Ux and a z component IT2.   The fields in terms of these are 
_d ran,, dn/1 
"~ by Idx^dz J 
Hx=leo} -rr—> by 
Hz 
■ I eoo 
dy 
(3.29) 
As before a subscript g or i is added to these quantities when specific reference is made to the ground or the ionosphere, respectively. 
The boundary conditions at the interfaces z=Q and z = h are that tangential components of the fields are continuous. This, in turn, requires that k2Ux, dUx/dxJr()IIz/dzy ieull2 and iewdnx/()z are each continuous at these interfaces.    Integral representations of ITX and n2 which 
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Figure  4.    Rectangular coordinate system for the horizontal dipole between two plane interfaces. 
are suitable for matching are 
nz=M^-+    [U(C)e-"<c*+V(Oe+ikCz]Ha™(kSp)dC (3.30) 
n2=^ (* {X(C)e-ikCz+Y(C)e+ikCW2)(kSp)dC (3.31) 
for O'Cs'CA.. Similar expressions are used for the x and z components of the Hertz vector in the spaces s<C0 and z^>h. Applying the boundary conditions involving II ^ only, leads directly to the following solutions for the unknown coefficients in n^: 
rR\+R\m exp [-2ikC(h-z0)}l , 
U(C)-^     i-E^RUxp (~2ikCh)      JeXp(    lkt3o) {6-32) 
^g)-[?-|^?(-2^)0]] -P ["^-.)] (3.33) 
where J?J and 7?? are the complex reflection coefficients given by eqs (22) and (23) and they are also functions of C. 
The remaining two boundary conditions, namely,  the continuity of ieo)Hz and dUz/dz 
+ bUx/dx enable the coefficients X(C) and T(C) to be found in terms of U(C) and V(C). The connecting relations are 
P-QBg exp (-ikCh) . 
^L)-l-RtRgexp (-2ikCh) (6     } and 
v^rn    PRi exp (—2ikCh) — Q exp (—ikCh) ,      . 
r(C)-~        l-ff,flf exp (-i2&Cft) (^5j where 
P=[*-«*o+tf+F] (^f) (3.36) 
It is understood that i?*, i?g are functions of C and are defined by eqs (11) and (12). 
The integral for Ux can be observed to have precisely the same form as the z component of a (magnetic) Hertz vector for a vertical magnetic dipole. This in turn has the same general form as the z component of the (electric) Hertz vector for a vertical electric dipole. The residue series representation for Jlx is given by 
n«s^S #o2) {kSmp)fi(zo)Ji{z)^{C) (3.38) 
and 
where 
tt(O-[i+i'«'cW0Wc] 
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where the summation is over the poles of the integrand at C=Cm of the integral in eq (30). These are solutions of 
Rhi(C)Rhg(C)e-2ikhc=e-i2™ (3.39) 
for integral values of m. 
The height functions have the form 
2/,;K-)-[^(^r)J~^+^+[/^(0]^-^ (3.40) 
Of particular interest is the vertical magnetic field component.   It is given by 
TT .     dUx        .     dUx   . 
H2=—lea3-^—= — leu —— sin 0 dy dp 
Tfhk =sin <A if S SmH? (kSmp)f»(2om(z)dUC). (3.41) 
WhenlfcS^pj^^ 1 or when p^>^>X, the first term of tin4 asymptotic expansion of the Hankel function IIi2)(kS„,p) may be employed.    'Phis leads to 
ff,«—^^*^ES£/.. foO/. (z)e^-^ 5* (C). (3.42) 
The other field components involve integrals which may be treated in the same way. Also of great interest is the vertical electric field.    It is not difficult to show that 
Et= ~ [^ly/o^ (kSnP) gn (z0)fn (z) Sn (C)] (3.4:0 
where 
2sr»(2o) = CU[R,{CJ]-* exp (*<7„2)-(7n[#, (<?„)]* exp {-ikCnz). (3.44) 
It may be noted that 
kgn(z,) = -i^-fn(zo)- (3.45) 
The summation is now over the roots C=Cn of the equation 
Ri(C)Rff(C)e-i2rkCh=e-i2irn. (3.46) 
When p^>^>\ the above expression simplifies to 
#2^cos 0 £0^L 1__ p s!/re(^)^(^0)^(1-^5n((7). (3.47) 
When l&C^ol^l and l&C^l^l the preceding simplifies even further to 
ftaMB^l^^SSy^HW. (3-48) 
4. Properties of the Modes for Flat Earth Case 
4.1. Vertical Polarization 
Much has been written in the literature on the numerical characteristics of the modes. Controversy concerning the method of numbering the modes has also arisen. It is the opinion that much of this discussion has been unnecessarily involved. The important thing is to sum over all modes which are excited by the dipole.    Consequently only these modes need be 
163 
considered. Because of the form of the integration contour r the relevant solutions must satisfy 
Rg(C)Ri(C)e-2ikhC=e-i2™ (4.1) 
and have their real and imaginary parts positive. That is, Cn is located in the first quadrant. The numbering is then assigned in such a way that there is continuity in the limiting case of perfect conductivity (i.e., Rg=Ri=l). 
irTl Cn=TT with 7i=0,l72,3, .... 
As Dr. H. H. Howe points out, this is not quite unambiguous when both the ground and the ionosphere are both imperfectly conducting. The more general statement of the rule is [23]: 
For a fixed value of kh, determine n on the assumption of perfectly conducting walls, then <rg and <Ji in turn are to decrease continuously to their prescribed values while C varies continuously. For walls of high but finite conductivity this means that mode 0 has a minimum attenuation and the other modes have successively higher attenuation as n increases. For poorly conducting walls, this is not necessarily so, and in fact, in cases of most practical interest for the vlf band the mode of lowest attenuation is of order one.3 
Numerical values for Cn are available and will not be quoted here. Some properties of the modes, however, may be simply obtained without resorting to a full numerical solution. For example, if the walls are highly conducting the reflection coefficients may be approximated as follows: 
R^=w^url-wc^exp (-m) (4-3) 
subject to |C|2>>|A^ff|-2 and \Nf\~2.    Then the resonance equation is simplified to 
khC=irnJ[-i -^ (4.4) 
where A = (l/Nt+1/Ng). 
Regarding A/C as a small quantity, this can be solved to give 
where €0=1, en=2, (715*0). 
The magnitude of the second term must be small compared to the first term for the above perturbation method to be valid.    This restriction and the previous one are both met if simultaneously 
-.— 
M|A|«land^«l-(^ Now for highly conducting walls ag»ego) and o->>€jco and thus 
3 The mode numbering system described above is somewhat different from Budden.   For a fixed value of <r,- he starts with a very small value of kh, increases it continuously and requires that C varies continuously for the same n value. [13] 
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Consequently 
and 
The influence of finite conductivity is thus to increase the real part of Sn and consequently the phase velocity c/Re Sn is decreased relative to the free space value c. As expected the finite conductivity produces damping and the resulting attenuation factor is — k Im Sn in nepers per unit distance, to this approximation. 
The above approximate formulas for the real and imaginary parts of Sn are the ones usually encountered. They have been quoted by Schumann [5] for example. It is not also appreciated that they arc not applicable for a mode which is near cutoff. This should be evident, however, from the second inequality given above. To relax this restriction, the resonance equation 
khC=wn+i~ (valid for \A\kh«l) (4.9) 
is solved as a quadratic in C to yield 
2'HsH(sy+4*B]! «■"» 
The positive sign before the radical is chosen since it reduces to C=(wn/kh) when A approaches zero as it must.    The corresponding form for Sn is then given by 
^{'-OT'+V^w]'}' 
When n = 0, this simplifies to 
which reduces to eq (5) when n=0 and |A|<<M. Now since |A|M<<1 the radical can be expanded for n^>0 to yield 
The preceding discussion concerns walls which are highly conducting. The approximate solution obtained would indicate that the attenuation increases indefinitely as the conductivity of the walls decreases. Such is true as long as |A|<<1. For very poor conductivities this condition becomes violated. When \A\kh is of the order of unity, it is apparently necessary to solve the resonance equation by numerical or graphical means. This approach is described briefly in a later section. As it turns out, for a given value of n, the attenuation reaches a maximum value as |A| is continuously increased and thereafter diminishes and approaches a broad minimum.    To illustrate this interesting phenomenon the resonance equation 
Re(C)Ri(C)e-2ikhc=e-2*in (4.13) 
is solved approximately under the condition that 
\NtC\«l       and|iV,tf|»l. 165 
<7i=(l-^)i^[iV!-l+(CB)2]4 (4.17) 
Thus 
R,(C) "-e-vfiioi and B^Oar^W (4.14) 
and therefore 
^+^+i*M7=«(n-l). (4.15) 
The zero-order approximation is obtained by replacing Rt(C) by —1 and RS{C) by +1.    This would yield 
C=On=(n-i)w/(kh), »=1,2,3, . . . (4.16) 
as mentioned in section 2.    For the first-order perturbation 
S2\i     1 o,=i i
and 
C=(.-0si 
since |A^r|>>l.    With these simplifications it readily follows that 
G ~ 7r(7t~-)+^k (4.18) 
kh-imim-i+(cny]-i 
and 
S.= (1-CJ)*. 
When the upper medium is an ionized region, it is convenient to write 
It may be shown that for vlf, L is approximately real and has a magnitude of the order of unity.    Furthermore, for a highly conducting ground 
where 
Then 
".»_i(i4)[(^.-jj* ^» 
Assuming (Cn)2<i<CL (which is true for low order modes), and that L is real, the real and imaginary parts of Sn can be written 
EeS-=s-+^ws:[(r-'(v7;-,V)+'3] (4-20) 
and 
Im 
Sn=——^ =- [~(<7J2 fVI+4-V\G~\ (4.21) 
^     ir(n—$)(n—l) kh (2A/X) 
and 
It may be observed that for a fixed value of h/\ and ^G the attenuation factor, — k Im Snj has a broad minimum when L=l. For L somewhat less than unity, the attenuation factor varies as L 2 or directly as the square root of the effective conductivity of the ionosphere. On the other hand, for L somewhat greater than unity the attenuation factor varies as L2 or inversely as the square root of the effective conductivity. 
The excitation of the modes is proportional to the quantity 
d'Mn)    L 2khRg(C)R((C)   J (       } 
c=cn 
When M|A|<<1, whore A=l/N,+1/Nt, it follows from eqs (2) and (3) that 
^(GOfl.CGOaexp [-2A/CJ, 
and 
and thus 
9A 
[d[Bf(Offi(C)l/aC]c-c«=^ exp [-2A/rV] 
*»(G->^+*4^] l- (4.23) 
Now the resonance condition states that 
ikhCn+A/Cn=i2irn (4.24) 
and for n = 0 this leads immediately to 
50(C0)=i/2 
while for ft =1,2,3,  .  .  . 
On the other hand, if the upper medium is very poorly conducting such that 
|JV,tf„|<i 
and the lower medium is highly conducting 
iw.i»i 
it follows that and 
Thus 
R^CJRtiCJ ^-exp [_?^_-^-J (4.25) 
dr B.CO^COJs-^--^] Rg(Cn)R{(Cn). (4.26) 
w^aCi-K(f-T^rai (4-27) 
for d=1,2,3, . . . since the term in parentheses is always small compared to unity. 
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4.2. Horizontal Polarization 
In the case when the excitation is by a vertical magnetic dipole or horizontal electric dipole the modes excited may be of a transverse electric (TE) type. The appropriate modal equation is 
Rhg (C) R\ (C) e-mhc=e-i2v^~1) (4.28) 
where rn = 1,2,3, .... 
Now if \C/Ng\ and |(7/JVi|<l 
Rhg (C)g- exp (-2C/NgCg) (4.29) 
and 
R\ (C) & - exp {-2CINiCl) ■ (4.30) 
The modal equation is thus simplified to 
cbm+7m\+ihkC=iirm (4-31) 
remembering that 
c*= V~WJ'      Cs=V~Nl)"' 
and S2=l-02. 
A first order solution is obtained by replacing S12 in the expressions for Ct and C„ by the zero order value, e.g., 
»-'-(S)' <432> 
The approximate solution of the mode equation is then given by 
where 
^[^s-'+C^T+h-'+C^T (4M) 
and Sm=(l-C2m)$.    When |JVJ| and |2V§|»l-feY 
it is seen that For |A^|<M, and 
Aw ~ -— J  — A . 
c 
'5('+«h) <«5> 
«-['-(s)T-4(s)I'-(s)T 
which is valid when the modulus of the second term is small compared to the first. For highly conducting walls 
A^|A| = 4(^)V(fy] (4.37) 
and therefore 
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and 
In summary, these are valid when 
and irrn/kh<^l. 
It is rather interesting to note that the above expressions for Re Sm and Im Sm are vitv similar to the corresponding expressions derived for Re Sn and Im Sn in the case of vertical polarization. [For example compare with eqs (7) and (8).] In the present case, of course, there is no zero order mode but apart from this, the perturbation term involving |A| now has an additional factor [(Tm/kh)]2 which is less than unity if the mode is above "cutoff." Thus, everything else considered equal, the attenuation factor of the TE mode is decreased relative to the TM mode in the earth-ionosphere waveguide with walls assumed to be of high conductivity. 
In the earlier notation it was convenient to represent the refractive index in the form 
Wl-l-j 
where L is a real number which may be comparable to or much less than unity.    Thus 
H<SHY+w; <«°> 
The corresponding solution for the modal equation is obtained from 
When L<<1 this reduces to eq (36). 
5. Influence of Earth Curvature 
The curvature of the earth has been neglected up to this point. The problem is now formulated in terms of spherical coordinates (r, 0, <£), with the earth idealized as a homogeneous sphere of radius a, of conductivity ag, and dielectric constant eg. The lower edge of the assumed homogeneous ionosphere is located at r=a-\-h. The source vertical electric dipole is then located at r=a-\~Zo and the observer is at r=a-\-z (see fig. 5). In view of the intrinsic spherical symmetry the fields can be represented in terms of a single scalar function, \f/, as follows [26] 
(5.1) 
&<j)=rIT=Hd=zQ 
where ri=(ji[c)i and F=co2(e—ia/co)^. 
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(r,0,</>) 
Figure 5.   Spherical coordinate system for vertical electric dipole between concentric spherical interfaces. 
As usual, the permeability is taken to be the same as free space for all the regions (/x= 47rX10~7). A subscript g is affixed to a, e, etc., when reference is made to the ground and a subscript i for the ionosphere. Since ^ is a solution the wave equation appropriate for the regions, the solution may be represented in terms of spherical wave functions, 
a^h{V (kgr)Pv(-cos d)        for r<a 
[b^K'^k^+b^h^ikrW^cos B)       for (a+h)>r>a 
cl»h™(kir)Pp(-cols 0)        for r>(a+h). 
In the above 
h^(kr)=(0H^f(kr) 
(5.2) 
where H$+l (kr) is the Hankel function of the first or second kind of order v+| with argument At. P„(—cos 6) is the hypergeometric series which is a special case of the hypergeometric function F (a, j8, 7, z) namely 
r,  / „\        7-1/ 1   -,    ■,     1 + COS ff\ 
P,(-cos 0)=Fl—v, r+1,1, -^^ )• 
(5.3) 
The reason P„(—cos 6) is employed rather than Pv (+cos 6) is due to the fact that \p must be regular on a ray 6=tt, whereas 0=0 is to contain the singularity which is the source of the field.    Sommerfeld [26] has pointed out that 
limF 
0->O 
(—v,v 
+1,1, 
1+cos 6\      smvir 
log d2 
(5.4) 
which illustrates the singular nature of \p along the polar axis. 
The quantity v is to be found from the boundary conditions that the fields Ee and H<f> are continuous at r=a and a-\-h. This, in turn, requires that (rj/r) c)(r\l/)/dr and k\j/ are continuous. Thus, four linear equations in the coefficients a^, b^, bf\ and c*2) are obtained. In order that these yield a nontrivial solution, the four by four determinant of the coefficients should vanish.    This requirement is explicitly given by eq  (5)  as follows: 
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nj\ pM»> (k/-)~\ 
kjiil) (kga) 
0 
_/v\ prA<» (kr)l 
dr 
-lehil) (ka) 
(   V  \rdrh™ (kr)l \a+hJl      dr     J 
a+h 
khi° [k (a+h)] 
-M<2> (ka) 
(_n  \Vdrh™ (kr)l \a+h/l      dr      J 
a+h 
*A» [k (a+h)} 
( 17, \fdrh™ (ktr)l \a+h/i       dr      J 
a-\-h 
kthPVctia+h)] 
=0 
(5.5) 
Such an equation as this was obtained by G. N. Watson in 1919. To solve it for v without approximation does not seem to be possible, although if the general spherical Hankel functions of complex order and argument could be programed for a computer, an exact numerical solution might be obtained. In view of the idealizations of the model and the uncertainty of the effective electrical constants of the lower ionosphere, however, it does not seem warranted to expend too much effort in this direction. As is so often desirable in physical problems, asymptotic approximations to the rigorous wave functions are introduced which greatly simplify the problem but at the same time lose some generality. 
The Debye-Watson representation of the Hankel functions are [26] 
when |(V+§)/&/*|<l but not near 1. Also \v-\-\\ and kr must be large compared to unity. The upper (and lower) signs are to be considered together. This is really a W.K.B. (Wentzel, Kramers, and Brillouin) approximation to the radial part of the wave equation. It is not difficult to show that the resonance equation involving spherical Hankel functions can now be expressed in the equivalent form 
RgRt exp S-%2 P       fi-^+^H dx\=exp (-t2m) 
(5.7) 
where n=0, 1, 2, 
R 
	kg 
	l~i (j,+i)£l 
L       (ka)2 J 
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	(ksaf _ 

	ks 
	,   (v+h)'2' L       (ka)2 J 
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	L       (haf J 


(5.8) 
and 
kt 
(v + W 
R =    L     k2(a+h)2_ 
(v + h)2 ni 
[}   k2(a+h)2 
"     (v+i)2 
L     kVa+h)2J 
'+k 
(»+i)2 
_     k\(a+h)2_ 
(5.9) 
The functions Iic and Rf quoted above can readily be identified as Fresnel reflection coefficients for complex angles of incidence cos-1C and cos ~lC, respectively.    Furthermore 
C=[l-S2V       where 8= 
v+h 
ka 
and 
C' = [l-(S')2}h       where S"=7f^i 
k(a+h) 
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The resonance equation can thus be written 
Rg(C)Rt(C') exp [ -i2k P \c2-\~ S^dz\=e-^in (5.10) 
where 
and 
7^)=Wl      with ^=[i-^;J (5.1D 
^')=w^i   with cHl-^r\' (5-12) 
It can be seen that, in view of the relation 
(a+h) S'=aS, 
the resonance equation reduces to its flat earth counterpart as h/a tends to zero. In fact, it appears that if \C\^>y>(h/a)^^1/10, the effect of curvature can be disregarded. This condition is violated for most of the numerical results given by Al'pert in the region from 15 to 30 kc. He assumed that the modes could be calculated on the basis of a flat earth in all his work [14, 15]. 
The resonance equation quoted above for a curved earth is only valid if the W.K.B. or second-order approximations to the spherical wave functions are valid. In a later section the corresponding form of the mode equation based on the Airy or third-order approximation is developed following the work of Rydbeck. It is indicated from this more involved analysis that the second-order approximation is valid if 
(t)'o«i. 
As will be seen, this is met for most cases of practical interest if the frequency is less than about 15 kc. 
6. Mode Series for Curved Earth 
Following the suggestion of Sommerfeld, the field is written as a sum of modes.    Thus 
+ (r,d)=j:Dvzv(kr)Pv(-cosd) (6.1) 
n 
for a<r<a+A, where 
zv{kr)=b(vl)hivl) (kr) + bl2)hi2) (kr). (6.2) 
The factor D„ is to be determined by insisting that the function \j/(r, 6) has the proper behavior at the source. The summation is over all integral values of n and the corresponding (complex) values of v are obtained from the resonance eq (5.5) as described in the previous section. 
Invoking the W.K.B. or second order approximation for the spherical wave functions, it follows that 
zv{kr) s const/l?,-* (Cn) expP+iifeS\c\^~ SI)1 dz~] 
+ Rgi (Cn) exp [ - ikj\d+^ S2)* dz^y     (6.3) 
This can be identified immediately as a combination of a downcoming and an upgoing wave. 
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The ratio of these two at the earth's surface (2=0) is Rg(On).    An alternate representation is zAkr) seonst-f #r* (<?»)      p|"+*fc fTr;,"+? &0 *] 
+ /?} ((70 exp \-ik f*(c»+^ S»)   <fc~| |     (6.4) 
which is a combination of an upgoing wave and a downeoming wave.    The ratio of these two at the lower edge of the ionosphere (z=h) is lit(Cn).    It should be noted that 
C 
:«(c»+f s»)* 
since (a+h) S'n=aSn and h/a « 1.    The internal consistency of these two representations at 0 = 0 and h for 2„(&r) can be readily demonstrated from the relation 
\=R\{Cn) R\{C'n) exp [-*/o*(^+f Slf &] (6-5) 
which also indicates that the multiplicative constant is the same for the two representations. In what follows the constant can be absorbed into the factor I)v. 
To study the orthogonality properties of the modes, the following integral is considered 
1= Zv(p)z,(p)dp (6.6) 
J ka 
where v and \x are two sets of modes.    Now quite generally the function zv{p) satisfies 
P rp (f>z,) + [p2-v(v+l)]zv=0 (6.7) 
and there is a similar relation for g„.    These two equations are now multiplied by 2M and zVf respectively and integrated over the domain ka to kb, to obtain 
(9 d (9\ ~ d <»\T 
(6.8) 
^+1)-m(m+1) 
For the important modes, the right hand side of eq (8) is negligibly small if /x t^v since the numerator vanishes at the limits ka and kb when Rg and Rt approach ± 1. For the important case fx = v, a normalization factor is defined by 
r*kb 
JV.^lim      ztx(p)zv(p)dp 
H-^p J ka 
Cm 2kh 1 
= L ^(P)Ydp^—, where 5n=^ ^ ^ p; (6.9) 
1
2kh Cn 
It should be remarked at this point that the modes are not strictly orthogonal since the right-hand side of eq (8) does not vanish identically although it is small compared to Nv. As the conductivity of the bounding walls approaches infinity the modes would be completely orthogonal. 
Multiplying both sides of eq (1) by zv(p) and then integrating with respect to p from ka to kb, leads to the following formula for T)v\ 
^A^/cosJ>^^- (6J0) 
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To actually evaluate Dv, it is desirable to let r->r0 and 0-^0, in which case $(r,d)—>\l/0(r,d) where \f/0 is the primary influence which is singular at (r0,0). For a vertical electric dipole consisting of an infinitesimal element of length ds and carrying a current, /, it is well known that 
TJS        -MR 
where E={r\Jrr2—2rr0 cos 6)2. 
Following the process suggested by Sommerfeld for the determination of the Green's function for the perfectly conducting sphere, the integration in eq (10) is carried out in the immediate neighborhood of the source. For example, r=rQ(l-\-rj) where — e<Cr7<C + €7 e^^l and dr=r0dr), zv{kr)^zv{kr^), e~ikR^l, while 
Therefore 
Now 
i!Si[(l+,)-+l-2(l + ,)(.-0]-1K^9i?. (6.12, 
lim [P,(-cos 0)]-* S111^r log 62 
and 
lim (^      d\    =lim/log [e+^e2+d2]-\og [-€ + V?+#]\^log(?2. (6.14) 
It then follows that 
n       %   zv{kn) Ids . 
^=z7rrr~ 1—°n- (6.15) 
2Jch sin j/7r 4r0 
The final form of the function \f/ is thus given by 
iS»a\~ Idsi X^ Z^kr^   2^kr) Pv( —COS 0) ,ft -Av 
^(r0)~——     2_j n  x 77-7 : o* (6.16) 
2ifo,on=oM... 2, (to) 2„(Z:a)      sin j>tt 
where the second-order or W.K.B. representations may be used for radial functions zv(kr), etc. As can be seen from eq (4) these can be greatly simplified if z/a<C<C |Cj|, for then 
g,(fcr) _eikCn*+Rg(Cn)e-ikCnZ= 
zv(ka)=        2[Rg{Cn)$ Jn[) [     ° 
which is the same height-gain function obtained for the flat earth case.    For heights even as great as 10 km and frequencies less than 20 kc, this is an excellent approximation.    Similarly, 
gfgW^o) (6.18) 
where z0=rQ—a is the height of the source dipole. 
The radial field component is of most practical interest and, for the moment, attention will be confined to it.    Since 
and 
ET=U JL |Ysin^) (6.19) 
r   sin ddd\      50/ 
s-hh^[si" *-^w^> ("+1>p'<-cos *>=° <6-20) 
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it follows that 
*«^S^-W'-W S^^— *} (6-21) 
wil h ?+%^ &&#„.. This is t he final solution of the problem being valid for the air space between the earth and the ionosphere.4 
For  purposes  of  computation  several  simplifications  can  be  made.    The  asymptotic expansion for the Legendre function, given by 
is valid if M>> 1 and # not near 0 or *"• Since the imaginary part of v(t—6) is also large for 7T — 0 greater than about 10° or 20°, it follows that 
P> ("C0S 0H^ref^ [*(*+§) (-^)-W4} (6.23) 
Furthermore, the source and observer heights are usually sufficiently low that kh0Cn and khiCn<^\ and r{)^r^a. 
The simplified form of the field can now be written 
^    ^Lsind/oJ    (A/X) ^o n   n (       j 
where d=ad, the arc length between the source and the observer, X is the free-space wavelength, and #„=(1 — Cn)*. E0 is the field of the source at a distance d on a flat perfectly conducting earth.   For d/X^>\, 
E0=i (rj/\) Ids (e-i2*d/*)/d. (6.25) 
As the radius a of the earth tends to infinity it is immediately evident that the flat earth formula given by eq (2.5) is recovered. 
7. Antipodal Effects 
The general form for the field  in  the space a<V<a + A for a vertical dipole source has the form 
fi-SPi £ «. "t±^P,(-cos 6) (7.1) 
where <50=^, 5W= 1(715^0), and 
v(p+l)^(v+i)2^kaSl (7.2) 
Now as mentioned above when 6 is not near 0 or x, the Legendre function may be replaced by the first term of its asymptotic expansion.   This result quoted above is valid if 
rT>(7r-^)        and,^»0. (7.3) 
In this region, the modes are simply proportional to 
77—71 cos \kaSn(w-d)-j 1 (7.4) 
(sm e)2      L 4 j 
4 From an analysis by Pekeris; Phys. Rev. 70, 518 (1040) it may be shown that 
- fit Jlb<» (A'6»- -^(^) H2(2) (fcS„p) 
™'*«o0-£(j) 
plus terms in (p/a)4, (p/a)6, etc., where v-\-\=kS„p.   Inserting this in eq (21) leads directly back to eq (3.21) when the curvature correction terms are neglected. 
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which apart from a constant factor can be identified as the linear combination of two peripheral waves of the form 
__i . e~ikaSne 
(sintf)* and 
1 e-ikaSn(2T-d)ei*l2 
(sin 0)* where 0<V. 
These waves are traveling in opposing directions along the two respective great circle paths ad and a(2w—6) from the source to the observer. It is noticed that there is a ir/2 phase advance which the wave traveling on the long great circle path picks up as it goes through the pole 6=w. The linear combination of these two traveling waves is to form a standing wave pattern whose distance Am between minimums is approximately given by 
kAmReSn=7r       or Aw=A/(2 Re Sn) subject to 
-Im Sn<Re Sn. 
As one approaches the pole d=w, the first term in the asymptotic expansion for the Legendre function is inadequate.   A more general form is the asymptotic series [27] 
p 2_ jrvfi).       m)if  cos[Q+^>-*>-(^>] 
"{   C    Pj=7r^I>+3/2) Y- (H-3/2),/! (2sm0)J+« v   °> 
wliere 
(a),= a(a+l) (a+2)  .    .    .    (o+l-l), 
for example, a0=l, ai = a, a2 = a(a-\-l), <*3 = a(a+l)  (a + 2), etc. 
Since \v\~>l the factorial functions may be replaced by the first two terms of their asymptotic expansions; this leads to 
r(H-i) 
K'-i+°(?)> 
T(v+3/2)    v\ 
The preceding asymptotic expansion for Pv(—cos 6) is not usable at and in the vicinity of the pole B— w.   In this region a suitable representation is given by [27] 
P,(- cos 0)=Jo(u) + sin2 (^) [4r~J2 (") +5 ^ (i)]+0 (sin* (^) )        (7.7) 
where 77= (2y+l) sin [Or— 0)/2], Jm(rj), for m=0, 1, 2, and 3, is the Bessel function of first type of argument 7? and order m. When w—6 is small the first term is usually sufficient and furthermore 
V^(v+i) (ir-d)^kaSn(T-d). 
Thus for mode n, the field in the neighborhood of the pole is proportional to the Bessel function 
Jo[kaSn(T—0)]. 
It is then not surprising to see that the first term of the asymptotic expansion of J0 is the same as that of Pv(— cos 0). 
8. Resonator Type Oscillations Between Earth and the Ionosphere 
At extremely low frequencies (elf), where the wavelength is large compared to the height of the ionospheric reflecting layer, the electric field is essentially radial and only one waveguide 
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type mode is significant.    The field is thus expressed by the first term of the mode series which reads 
4kha2   sin kit where v-\-^^kaSQ and 
s^-miw+w) (8-2) 
in terms of the relative refractive indices Nt and Ng of the homogeneous ionosphere and the homogeneous ground, respectively.    Now at elf |iVg|>>|JVj| and furthermore, 
Thus 
7*3/2 
2 (a^h 
Now as mentioned in section 7, the factor P„(— cos 0) may be replaced by an asymptotic expansion if kad or kaiir—d) is somewhat greater than unity. The field in this case may be regarded as two azimuthai-type traveling waves. Furthermore at the pole (6 near t) where the second of these restrictions is violated, it is possible to use an equivalent representation which correctly accounts for the axial focusing. An alternate viewpoint which is suitable at elf is to consider the field as a superposition of cavity-resonator type modes. It is expected that such a representation would be very good when the circumference of the earth is becoming comparable to the wavelength. A suggestion of this kind was apparently first put forth by Schumann [28]. The starting point is the expansion formula 
P-4^=-1- ± P„(z)    . J*+\   _ (8.3) 
sin vw        t £=q n(n,-\-l) — v(v+\) 
where the summation is over integral values of n. This result follows directly from a formula given by Magnus and Oberhettinger [27] (p. 57) which is valid for vt*0, ±1, ±2, . . . , and O^0<7r.    The electric field, for A/a<<l, is thus written 
/^+l) ± 2"+l (8.4) 
where #=cos 9.    The early terms of the series are then proportional to 
Po(*) = l, 
P1(x)=cos 6, 
P2(£)=4(3cos20-1), (8.5) 
and so on. The configuration of the electric field in the first three cavity modes is depicted in figure   6. 
Retaining just the first term it is seen that 
K=Er] =-^~, I (8.6) 
which is independent of 0. Clearly this corresponds to a concentric spherical capacitor energized by a current Ids/h resulting in a constant voltage hE°r between the plates. On rewriting eq (6) in the form 
hE°JJ£r (87) 
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        Figure 6.    Depicting electric field lines in the first three cavity resonator modes. 
it is seen that 
a= 
47ra2e 
which can be identified as the capacity between the spherical surfaces whose areas are both 47ra2 within the approximation h/a<C<Cl. 
It has often been suggested that the omnipresent constant voltage gradient in the atmosphere results from the accumulated action of lightning strokes which impart a charge to this earth-ionosphere condenser. For example, when a current surge flows say for 10~3 sec with an average of 103 amp with an average column height of 3 km (i.e., ds^2X103, then for h^70 km it readily follows that 
^1.3v       or£'°^2X10-5v/m. 
Presumably, many such charges are required to build the field up to its observed value. 
Of somewhat more interest are the cavity-resonator oscillations which may be excited. Using the notation of the operational calculus iu is formally replaced by p then 
v(y-\-l) ^ —p2—p^a 
(8.8) 
where a=1/[h(<Tifi)l/z\.    The source dipole moment Ids is in general a function of time.    For purposes of illustration, consider 
Ids=(Ids)0u(t) (8.9) 
where u(t) is the unit step function at £=0.    The Laplace transform of the source moment is thus given by 
(Ids)0 
/» 00 
Idse~vtdt= Jo V 
The Laplace transform of the field is given by 
w . v    (Id8)0 , iN^o / \       2n+l 
n °e n=o o)iJrpZJrap2 
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(8.10) 
(8.11) 
where c/n=(a/c)2 n(n-\-l). The actual time response of the electric field is denoted er(t) and is zero for /<0.    It is related to Er(p) by 
Er(p)= (   er(t)e-ptdt. (8.12) 
The inversion of this integral equation is a standard problem in operational calculus and has been carried out explicitly by Schumann [27] for a transform which has the form of eq (11). in the present discussion a much simpler approach is used which is justified when the damping is small. It should be noted that ap1 has already been assumed small compared to p, thus a perturbation method is in order. 
When a = 0 corresponding to no dissipation (i.e., perfectly conducting" boundaries) 
The poles in \\w j> plane are thus at p= ±i«„.    The inversion to the time domain ^ives 
e^(t)=^^Pn(x)(2n+l) cos a>„t (8.14) 
which may be verified by noting that the above expressions for Er(n)(p) and erin)(t) satisfy eq 
(12). 
A step-function dipole source thus excites the static held (i.e., co0 = ()) and the cavity-resonator modes (n=lj 2, 3, . . .).    For a=6,400 km 
co,/27r=10.6 cps 
a>2/27r=18.3 cps 
co3/2tt=25.9 cps. 
To account for finite conductivity it is necessary to solve the equation 
p2+pV'2a+a>l=0 (8.15) 
which gives the poles for the function Er(p) m ^ne ('asr when a^O. Remembering that ap* <C<C:P, it readily follows that 
p^iun^+^eiZ*^Mn-Sln (8.10) 
where Jn = un( 1— r^—^ J is the resonant frequency and 
o -<"#* 
^n        23/2 
is the damping coefficient.    It then easily follows that cos oont is to be replaced by 
e-nnt (,os ^j 
To this approximation, the effect of finite conductivity is to exponentially damp the oscillations with time.    For a=6,400 km, h ^100 km, o-^lO"4 mhos/m, the time constant is given by 
tin    ^n(n+l) winch is rather interesting. 
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sec (ti= 1,2,3, . . . ) (8.17) 
- r+j , 
The total field is thus given by 
«f(^^2PnW(2fl+l)ra.' coso'J (8.18) 
which is valid for a2£>> 1 or £>> l/(/i2<r^u). 
9. Excitation by Horizontal Dipoles for the Curved Earth 
The formulation of the theory for a horizontal dipole is similar to that for a vertical dipole. The complexity of the equations is greater, however, because of the nonsymmetry of the problem. Schumann [6] uses this approach in his analysis but his results are not complete as discussed below. The deficiency arises when the eigenfunction series is matched to the source singularity. In the case of the vertical dipole as outlined in the previous sections, this process is relatively straightforward but in the case of the horizontal dipole there is coupling between TE and TM modes which apparently is not accounted for using this technique. An alternative is to set up the problem in terms of a harmonic series representation wherein the summation is over integral values of n, the index of the spherical wave functions. This series is poorly convergent, however, and the Watson technique must be used to transform it to a series of residues at the complex poles v. Such a procedure was used by Wait [29] for a horizontal dipole over an earth with a homogeneous atmosphere. It would not be difficult to generalize these results to include the influence of the ionospheric reflecting layer. In the present work, however, it seems more instructive to use a different method which makes use of the reciprocity theorem and the results for vertical electric and vertical magnetic dipoles. 
For the first part of the problem a vertical magnetic dipole of moment Kds is considered. It is located at r=r0 on the polar axis. Due again to the intrinsic symmetry of the problem the fields can be obtained from a single scalar function \j/n as follows: 
rj      i     1      d / -   a W\ 
He=--^(r+h) (9.1) 
and H<f>=Er=He = 0.    Such fields are purely of the TE type whereas they were of the TM type for a vertical electric dipole source. 
The solution precedes in the same manner as for the vertical electric dipole. Now, however, the boundary conditions are that (l/r?r)d(r^)/dr and k^/h are continuous at the concentric spherical interfaces. In a form suitable for application to vlf propagation, the final result is given by 5 
^=J^       £      8^[Zo)l^z) P-y(-cosfl) (9.2) 
2khr0 m=i,2~3, ...       sin*>7r 
where 
*«~       ,Jn^n ' (9-3) 
I 
sin 2khC,„ 
2khCm 2/4(z) = [i^«7J]-« exp [ikCmz]+[Ri(CJ)i exp [-iWmz] (9.4) 
5 To conform with standard waveguide practice, the TE mode of lowest attenuation is denoted w = l. 
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and similarly for/*(20).    The modal equation has the form 
Rhg(C)Rhi(C') exp /-i2A fT(72+— S21 dz\=e~2*im (9.5) 
where 
and 
The electric field component E$ is thus given by 
E ^Kds _ 8h fhm(zo)fl(z) dP-(-cos 6) 0    2Ar0   to    m      sin vt dd 
Now when the source is a small loop of area da earning an average circulating current / it follows that 
Kds=ifxo)Ida. (9.7) 
Furthermore, if the receiving antenna is a horizontal electric antenna of effective length dl, the voltage at the terminals is given by 
v=E*dl sin <f> (9.8) 
where <j> is the angle subtended by the receiving antenna and the arc joining the two antennas (see fig.   7).     Thus  the mutual impedance Zm between  the  source loop  of  area da  and 
/ 
/ 
source                (P,an view^                        /^ Figure 7.    Source vertical magnetic and electric dipoles and dipoles                                           ^|  \S   \<p receiving   horizontal   electric   dipole for  mutual   impedance ®- *—y£-        calculation. 
I  a0 -J 
the horizontal receiving antenna of length dl is 
y _v _ip<»> da dl sin <l> ^ ,Q QX 
^~I— -2htT " v" (    } 
where the summand is the same as in eq (6). 
The mutual impedance Ze between a vertical electric dipole source at 0=0, r=r0, and the horizontal receiving antenna is also required. This may be obtained from the scalar function ^ previously obtained.    In particular 
"--I'm? w^'dsi* <9'10> 
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where 
-R^ exp [-*£ (Cl+f Slf] <**}•    (9-12) 
When z/a«\C2n\ 
2gn{z)5±Cn[R-\neikC»°—Rugie-i*cn*]. (9.13) 
Furthermore if |&<7„2| <C<0 which is the usual case 
gn(z)^A„fn(z) (9.14) 
where 
w, 
The mutual impedance Ze between the vertical electric dipole and the horizontal receiving antenna dl is thus given by 
z „v ds dl cos t^ (915) 
2/ir0 n 
where the summand is the same as in eq (11). 
It is now a simple matter to write down the field expressions when the source is a horizontal electric antenna carrying a current / of length dl. The antenna or dipole now is considered to be located at r=r0 and 0=0 and oriented in the direction 0=0. The vertical magnetic field at (r, 6, <j>) is obtained from the relation 
ifiuHrda=IZm (9.16) 
which relates the total magnetic flux in a small loop of area da at (r, 6, </>) and the vertical magnetic field at the same point.    Using eq (9.) it is seen that 
tt    Idl^.hf^(Zo)fi,(z)bP7 (-cose)   . ,Q17, 
In a similar fashion, the vertical electric field at (r, 6, <£) is obtained from the relation 
Erds=IZe (9.18) 
which relates the voltage in the small vertical antenna of length ds at (r, 6, </>) and the vertical electric field at the same point.    Thus 
^fs^^-Hos S) cos,. (9.19) 
Ihv n sm vir       06 
The other field components can be found from the above expressions for Er and Hr. Quite generally the field components in spherical coordinates (see fig. 8) can be written in terms of a set of purely TE and TM modes derivable from scalar functions U and V.   Thus 
*-P^?W] (9.20) 
Ee==l-Vm- f/W (9.21) 
r d0drv    '    r sin 0    d<£ v 
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        \ e    *(   fi ch)     Figure 8.    Spherical coordinate system for horizontal electric °g £g y. /\      U,o>.9/ dipole between concentric spherical interfaces. 
r sin 5 d</>dr 
Since U and V satisfy the equations 
(V2+F)£=0 
in the space a<V<a+A they must be made up of solutions of the form 
hl1](kr) cos #0 
P?(cos0) 
A<2) (&r) sin g<£ 
where q is an integer.   Since the field for Er and HT has already been prescribed, q= some consideration it is seen that 
(9.22) (9.23) (9.24) (9.25) 
(9.26) 
and 
Further, on noting 
it is seen that 
and 
tt    ^-^ a   r / \ &Pv (— cos 6) 
U=Y^Anjn{2)  ^ }-  COS* 
i7   x^ t>  -cn ( \ <*P* (— cos (9)   .    , ^=]E -Bw /» (z) ^ sin 0
[*2+^-^]w-2)(^)]=o 
c      ^•'(''+1)   ,,   , , ^ 5/J,(-cos») , 
#r = Z! f        -4»/»(s)  "^ L COS <*> 
tt     ^ v{v+\) t>   A /„\ d7J;(-cos 6>)   . 
«r=Zj r iimjhn{z) -    —r- sin <£• 
„i       r on 
(9.27) 1.   With 
(9.28) 
(9.29) 
(9.30) 
(9.31) 
(9.32) 
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On comparing eqs (30) and (31) with (17) and (19), it follows that 
and 
A-T^htin^ (9.33) 
71    2hv(v+l)   sin vw v       ' 
T>     ___Z____ °mJ m\Zo) /q oa\ 
nm~2hv(T+l)   sin?7r " K"M) 
When |*>|>>1 and 6 is not near 0 or it the following asymptotic expansion is valid: 
d P„(-cos 0) g* 2e~%T'\ (ffsi/2e-ikadS« (9.35) 
(sin 6)* W 
sin z>7r dQ where use has been made of the relation 
ikaSn. 
The height function g(z0) occurring in the expression for Er can be simplified at low heights. For example, if |&CW20|<^<0 which is the usual case 
^^wX'-mf' (9-36) 
Thus the vertical electric field of a horizontal dipole is well approximated by 
K^Eo ^^P^rT ^vtkv e«w^-(f/4,]][; bnSlJ2e-i(*snW (9.37) 
NK   [sm d/aj    (h/\) £=i 
where 
E0=i(r)/X)Ids(e-i2*d^)/d. (9.38) 
It is of interest to compare this with eq (6.24) for the vertical electric field of a vertical dipole with the same moment.    It is seen for a given mode 
Ejn) (for horizontal dipole) _ cos <f> / _SV\i E™ (for vertical dipole)   ~~ SnNg \     N*J 
(9.39) 
Since Sn^l, it is seen that the ratio does not depend critically on mode number n, thus 
Er (for horizontal dipole)    cos <j> / 1\1 ,Q A(), 
Er (for vertical dipole)     ~  Ng   \     N\) ' [      } 
In most cases |2V&|>>1 so the ratio is of the order of l/N0 which is small.    In particular, at very low frequencies 
cos <i> 
Ng 
*-(¥feiT/* cos * (9,41) 
which indicates that the ratio varies as the square root of the frequency. This is in disagreement with the results of Schumann who finds that dependence is the inverse first power of frequency. In the direction </>=0, of course, the ratio derived here turns out to be nothing more than the "wave-tilt" for a vertically polarized plane wave at grazing incidence on a flat earth.    Thus, Schumann's results [7] for the horizontal dipole would seem to be in error. 
The horizontal dipole also, of course, radiates horizontal polarization. The simplified expression for HT can be written by employing the single term asymptotic representation described above.    Thus 
H^E0sm<j>{dl\^r   dja   -|*e<t(,rt/x)_(,/4)1 £sie-iwsm S%fl{za)ft{z). (9.42) 
V WIN   Lsin «/fflJ m=l 
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10. Influence of the Earth's Magnetic Field 
In the preceding analysis the earth's magnetic field has tacitly been neglected. To indicate its effect the reflection coefficient for sharply bounded ionosphere with the magnetic field included shall be discussed. The derivation of the general formulas is due to Budden [30] but for highly oblique incidence great simplifications to his results can be made. 
The starting point is the magneto-ionic formula of Appleton and Hartree for the complex refractive index /* for a homogeneous ionized medium with superimposed magnetic field. In the region from 70 to 90 km in the ionosphere where very low frequencies are reflected, it is often permissible to employ the quasi-longitudinal approximation of Booker. It is now implied that the waves after they are transmitted into the ionosphere are steeply refracted toward the vertical. Essentially this means that the refractive index does not depend to any great extent on the direction of propagation for temperate and polar latitudes so that 
M2^l-i(co» exp (±ir) (10.1) 
where 
tan t=ool/v and 
In the above 
u>l=Ne2/em, 
N= number of electrons per meter3, e and m= charge and mass of electrons, e=8.854Xl0-12, y= collision frequency, coL= (4ttX 10"7)^/m, and 
H— effective strength of  the earth's magnetic field, (i.e., the longitudinal component for propagation in the ionosphere). 
It is now desirable to consider four reflection coefficients \\R\\, \\E±, ±R\ \, and ±R± to indicate the complex ratio of a specified electric field in the wave after reflection to a specified electric field in the wave before reflection. The first subscript denotes whether the electric field in the incident wave is parallel (||) or perpendicular (J_) to the plane of incidence and the second subscript refers in the same way to the reflected wave. A cartesian coordinate system (x, y, z) is now taken with z measured vertically upwards. The incident wave has its normal in the xz plane inclined at an angle 6 to the z axis. The components of the electric field are E\\ in the xz plane and E± perpendicular to this plane (i.e., in the direction of increasing y). When the -f sign is taken in eq (1), the refractive index is denoted /x0 corresponding to the ordinary wave, and when the — sign is taken the refractive index is denoted ide corresponding to the extraordinary wave.    With this convention, it can be shown that 
E±0/E{\0=-i and E±e/Elle=i (10.2) 
in the northern hemisphere. 
The incident wave is now characterized by a factor exp [—ik(x sin 6-^-z cos B)x\ and the reflected wave, therefore, contains a factor exp [—ik(x sin 6—z cos0)#]. Furthermore, the transmitted waves have factors exp [—ik(x sin 0o+2 cos 0o)/xo#] and exp [—ik(x sin 0e+2 cos de)nex]. The reflection coefficients are now obtained by matching tangential field components at the air-ionosphere interface. The results, expressed in a form suitable for computation are listed below. 
\\R\\^[^o+^)(C2-C0Ce) + (^e-l)(C0+Ce)C]/D (10.3) 
\\R±=2iC(fji()C0-^Ce)/D (10.4) 
±Ru=2iC(njC§-p.Co)ID (10.5) 
±R±=l(^+fJie)(C2-C0Ce)-(^e-l){Co+Ce)C]/D (10.6) 
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where and 
D=(n0+»e)(C2+C0Ce) + (Me+l)(Co+Ce)C 
C=cos 0,Co=COS 6Q,Ce= COS 6e. 
(10.7) 
Numerical values based on these formulas are available. 
Now for highly oblique incidence the value of \C\ is small.    Thus for |(72|<C1 
.finS
(Mo+Mg)CoPg 1 ,  (MoMe+l)(^o+fi) c 
Furthermore if |jLt0MeCy2|<^l, 
iixiii = 
a_[, 
(Mo+Me)CoCe 
2/XoMg    ^O+^e 
^-exp(-2ft,C) 
°] 
(10.8) 
(10.9) 
where 
To the same approximation 
where Also and 
flr 
M0 + Me     Co^ 
MoM<
L       Mo+Me    <-,oCe       J 
&.= 
1   c0+ce 
H0 + /JLe     CQCe 
p      2iC fioCo—fj^ 
^0<   e        M0 + ^e 
■iA* 
Moi-Me 
(10.10) 
(10.11) (10.12) (10.13) (10.14) 
It is immediately evident from the above that as 0 tends to x/2 (i.e., grazing incidence), the reflection coefficients ||i?n and ±Rx are both approaching —1 whereas the conversion coefficients | f jB_l and ±R\\ are both approaching zero. In this sense a sharply bounded ionosphere behaves as an equivalent isotropic medium for highly oblique incidence. 
Some further simplifications are possible when the ionosphere is effectively a good conductor.    For example, if 
Consequently, 
and 
|cor/co|^>l jug=l—i(ur/oo)eiT^ — i(cor/o))eiT, f4 = l — i(ur/u>)e~iT^:—i(a)rloo)e~iT. 
(l + i)(u/ur)i cos (r/2)(C2-l)±2^[l-^/cor] C !lPr* (l + i)(coK)* cos(r/2)(C2+l)+2^[l + W^] C 
B..S 
,#. ^ 
-2(a;/cor)^(l + ^)Csin(T/2) 
!i   ft     (l + i)(coK)icos(r/2)(C2+l)+2i[l + ^/cor]C 
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(10.15) (10.16) 
(10.17) (10.18) 
These may be further approximated, for cos 0«1, by 
1_I|^^2(^C-OS^,±A'±+1^2(/^y^^ (10.19) 
\o)r/        COS 6 \u)rJ    COS (r/2) 
provided the right-hand sides of these equations are small compared to one.    To the same approximation 
!i^-L «-2(i«/^)* sin (r/2). (10.20) 
±#11 
The quasi-longitudinal approximation used above is only valid when 
iM-'-yi 
wS«i 
4co2co| 
where coL and cor are tlie longitudinal and transverse components of the (angular) gyro frequency. Clearly, this condition is violated when the transverse component of the earth's magnetic field is large such as for propagation around the magnetic equator. 
The case of a purely horizontal and transverse field has been considered by N. F. Barber and D. D. Crombie (to be published in Journal of Atmospheric and Terrestrial Physics). Their results, applicable to a sharply bounded ionosphere, may be written in the following form 
II fl II =£=!>!! #l=0 (10.21) 
where 
A~ {i+iLy-r 
where L=u/o)r and 7=corco/a>o. For east-to-west propagation (along the magnetic equator), 7 is positive, while for west-to-east propagation, y is negative. For highly oblique incidence, the above simplifies to 
\^Pl} (10.22) 
where 
1     (l + JL)l(iL-L2-y*)l-iy Al (l+iiy-y2 
Furthermore if, |/3|1Cr|«l 
B«ll as-«-*"* (10.23) 
which has the same form as equation (11) 
The exact determination of the reflection coefficients for any orientation of the earth's magnetic field may be carried out using a method outlined by Bremmer [3]. This has been done b}r Johler and Walters whose results are to be published in the following issue of this journal. 
11. Mode Series for an Anisotropic Ionosphere 
In this section the formalism for the mode theory is developed for a plane earth and an anisotropic sharply-bounded ionosphere.   The geometry is the same as in section (3) where the 
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ionosphere was assumed to be isotropic. In the present case the reflection coefficient [i?*]" is regarded as a matrix and written in the form 
™"-[& jST" m 
where the two primes are to indicate that it is a two column matrix. The individual coefficients l|i?U, ±R\\, \\R±, and j_R± discussed earlier, indicate the complex ratio of an electric field component in the wave after reflection to an electric field component in the wave before reflection. The first subscript denotes whether the electric field specified in the incident wave is parallel (||) or perpendicular (±) to the plane of incidence. The second subscript refers in the same way to the electric field in the reflected wave. 
When the ionosphere becomes isotropic corresponding to a zero magnetic field, the reflection coefficient in matrix notation becomes simply 
where Rt and R* are the complex scalar reflection coefficients for vertically-polarized and horizontally-polarized waves, respectively. The corresponding [matrix] reflection for the ground is 
i*j"=[? y- (n-3) 
The case of two successive reflections, the first from the ground and the second from the anisotropic ionosphere, is represented by the matrix 
[RgRi]" = [Bi]"X[Rs}"=[^ j£j_       *j ^}" (11.4) 
In the case of the isotropic ionosphere this reduces to 
[W«[V    bJjj}" (11-5> 
The arguments employed here are virtually identical to those of Budden who, however, assumes a perfectly conducting ground, such that 
#t=+landi?»=—1. 
In the previous formulation for a vertical electric dipole between the plane ground surface and a sharply bounded isotropic ionosphere, the fields could be completely derived from an electric Hertz vector which has only a z component. Of course, if the source was not symmetrical it was necessary to introduce an additional component of the electric Hertz vector. When the upper boundary is anisotropic, the single component Hertz vector is not adequate even for a vertical electric dipole source. This is not surprising since the TM modes are coupled to the TE modes by the anisotropic boundary conditions. 
Any electromagnetic field, in such a parallel plate region, can be obtained from a superposition of TM and TE modes which are derived from electric and magnetic Hertz vectors. 
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These are denoted individually by II[j and II± or, collectively by the matrix 
[n]"=Rj"J (n.6) 
where the single prime is to indicate that it is a single column matrix. II ± which is a magnetic Hertz vector is often referred to as a Fitzgerald vector. Furthermore, the electric and magnetic fields can also be written as single column matrices in the manner 
A'-dJ.i3r-[fJ («•») 
where 
2?ll=(P+graddiv)il|i (11.8) 
H\\=Uu curln|] (11.9) 
vH±= (F+grad div)n± (11.10) 
-^ -> 
rjE±= — i^ curl n_L. (11.11) 
-» -> 
The intrinsic impedance 77 is introduced in the latter two equations to make II|| and II x of the same dimensions. The Hertz vector in matrix form corresponding to the primary excitation is then written 
HH 
(11.12) 
where Up has only a z component IT(?).    To match boundary conditions in the case of azi
muthal symmetry it is only necessary that the vectors II|| and II± have a z component. The condition of azimiithal symmetry is achieved if the reflection coefficients themselves are independent of the azimiithal coordinate <£. 
Formally the solution has the same form as the isotropic case if the appropriate reflection coefficients are now regarded as matrices. For example for the space o^z^h the (matrix) Hertz vector 
[lhy^lMMyC[F((^]^H^(kSP)dC (11.13) 
where 
Ids 
W-flfJ 
with M=
4irl eco and where 
L   lWJ eikCh{\-[RgRlYfe-2ikhC) K } 
It should be noted that the denominator in the above expression is also a two column matrix. Inverting this, following the usual rules for such operations, leads to 
\F{(i)Y' = {eikCz+[RgYfe-ikCz){\l^[NY (11.15) 
for £o=0, where 
A= 
	««-|fl| Rt 
	j.B|   B\ 

	0«x Rg 
	e2iCkH__LR± flA 
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(11.16) 
and 
The corresponding residue series are thus given by 
n J =-iM ? I5Akv7, Ws"> [el'J (1118) 
with 
Gy=fp(z)(e2iC*kh-Rhg±R±) (ll.W) 
and 
G±P=ift(z)R*\\R±. (11-20) 
The summation is over the poles of the integrand [^(C)]"- Clearly this corresponds to the roots of the equation, A = 0, which are designated C=CP. It is understood that all quantities in the summand of eq (18) are to be evaluated at C=CP. The "height-factors"/^) a,ndfl(z) have the usual form, that is 
2jp(z) = (Rg)-ieikC»z+(Rg)ie-ikC*z (11.21) 
and 
2f*(z) = (Rl)-leaG*+(Ri)le-tw*. (11.22) 
The above results reduce to those of Budden when the ground is perfectly conducting. 
The modes excited in the waveguide can be logically grouped into two sets. The first has a TM (transverse magnetic) character and the second has a TE (transverse electric) character. To obtain the attenuation and the phase constants of these individual modes, it is adequate to consider the anisotropy as sort of a perturbation to the corresponding TE and TM modes for the isotropic case.6 
To simplify the discussion the ground is considered to be perfectly conducting. That is, Rg=l and Rhg= — \.    The modal equation now becomes 
(^^-Il/?1,)(^2^+X7?i.) + ,]7?J.X7?|,=0. (11.23) 
When mode coupling is disregarded this breaks into two equations 
{lRl]e-i2Wh=1 = e~i2,n (11.24a) 
±R±e-i2kCh=-l=-e-i2Tm (11.24b) 
where n and m take integral values. As mentioned in the previous section the reflection coefficients for highly oblique incidence may be approximated by 
iRlOt-e^f (11.25) 
and 
±R±^-e~^±C (11.26) 
where to a first order, /S|| and /Jx are independent of C. It thus follows that the first approximation (indicated hx a superscript (1)) for the solutions of the modal equation are 
win—v) 
C,«C«»=J£^ (n=l, 2, . . .) (11.27) 
for the TM modes, and 
irm kh—iPt 
C^C^j^T (™ = 1, 2, 3, . . .) (11.28) 
for the TE modes. These have exactly the same form as when the ionosphere is assumed to be isotropic. The difference lies in the value of the coefficients /3\\ and fi± which are functions of the earth's magnetic field. 
6 It should be noted that the negative order modes in the case of an anisotropic ionosphere are not the same as tho positive order modes. That is,    C-i^-Co, C-2^-Ci, etc. 
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A second approximation to the mode equations is obtained in the following way.    The modal equation is rewritten in the two equivalent forms 
l-\\R{\e-i2kCh=2b{C) (11.29) 
l + ±R±e-i2kch=2y(C) (11.30) 
where 
2«(g)—',^+%JL (H.31) 
and 
I? 1>H„-V2kCh 
2^)~ «««*-ntfD <1L82> 
It is to be expected that 8(C) is a small quantity for the TM type modes and 7(C) is a small quantity for the TE type modes. The second approximations then are obtained by replacing 8(C) by 8(C^) for the TM set, and replacing y(C) by y(C%) for the TE set. Solving eqs (29) and (30) with these substitutions leads readily to 
for the TM type modes, and 
c „c^(n-h)-i8(CV) ai33) 
p== Lm kh-ip± [n-n) 
for the TE type modes. 
These should be adequate solutions since \8(Cna))\ and \y(Cm{1))\ are small compared to unity for the important modes. In fact for most cases of practical interest, the first-order approximations should suffice. 
To provide some idea of the character of the TM and the TE type modes excited by a vertical dipole source, the ratio of the tangential magnetic field in the two principal planes is considered.    For the pth mode, this ratio is given by 
(tM^")/(-«»^') 
for kp»l 
ikll\\ 
C,\\Bi.Bt 
[e2iCkn-RhgS_Rx\ 
kCpdzJA*> 
(11.36) 
where it is understood that the reflection coefficients are to be evaluated at C=CV.    The preceding expression reduces to 
which was given originally by Budden [11]. In general this ratio is small except near the TE resonance wherein the denominator becomes very small. <For the important TM modes which are of low order, both Cv and \\R± are small compared to unity and thus the magnetic field Hp in the direction of propagation lias a relatively small magnitude. 
12. Higher Approximations to the Curved Earth Theory 
In the previous sections the mode series for a concentric spherical earth-air-ionosphere system was developed.    In order to simplify the discussion and lead to results suitable for 
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immediate use, rather crude approximations were introduced. In this section the problem is reformulated in a more rigorous fashion and higher order approximations for the various spherical wave functions are introduced. This analysis is really an extension of the work of Watson, Rydbeck, and Bremmer. The final results indicate the range of validity of the lower order approximations used in the earlier sections. The formulas are in a form which is suitable for numerical computation. 
The earth is represented by a homogeneous sphere of radius a and is surrounded by a concentric homogeneous sharply-bounded ionosphere of radius c. The source is a vertical electric dipole of strength I ds and is located at r=b. The electrical constants of the air space are denoted e and n and subscripts g and i are added to these when reference is made to the ground and the ionosphere, respectively (see fig. 5). 
The fields can be expressed in terms of a Hertz vector which has only a radial component U, and thus, for the region a<r<a+/&. 
r orod Et=Q H,= -i^ (12.1) 
where k= (€ju)1/2co.7   A subscript g and i are also added to the field quantities when reference is made to the regions r<^a and r>c, respectively.    Furthermore, kg=(egtXg)1/203 and kf= (€ijii;)1/2co are the respective wave numbers for these two regions. The Hertz functions satisfy the inhomogeneous wave equation 
W+WU=CH:-b\d® (12.2) 
2wr sin 0 
for a<r<a+A, where the 5's are unit impulse functions. The factor 2wr2 sin 6 is the Jacobian of the transformation from rectangular to spherical coordinates. The constant C is to be chosen so that U has the proper singularity at the dipole, that is 
fi-ikR 
- bU-> A   .    p I ds for R-*0 
where R=[r2-\-b2—2br cos 0]1/2, and therefore 0= (i/we)/ ds. 
The field in the region a<^r<^a-\-h is now written as the sum of the two parts C7e+Lrs, where Ue has the proper dipole singularity at R—0, and Us is finite at the point. As Us is a solution of the homogeneous wave equation, it can be written in the form 
Us=f~ S (2<Z+1) [Aqh? (kr) + Btj, (kr)]P9 (cos 0) (12.3) 
47T     g = Q 
where jg(kr) and hqm{kr) are spherical Hankel functions of the first and fourth kind, respectively, and P?(cos 6) is the Legendre function. The summation is over positive integral values of q.    The corresponding expression for Ue is given by 
ihC °° (jQ(kr)h{2)(kb))    forr<6 
Ue=-^-^(2q+l)Pq(cosd)\jQK ^ (12.4) 
^ *=o I hf{kr)jq(kb))    forr>6. 
7 The function U=—it]\f/ in terms of scalar function ^ used previously for the potential. 
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Since there are no singularities other than the source dipole, the Hertz functions Ug and Ui are solutions of the homogeneous wave equations 
(V2+k*)(rUg)=0       for O^r^a (12.5) 
and 
(V2+kfi)(rUi)=0       for r^c, (12.6) 
Noting that Ug is to he finite at r=0 the solution must be of the form 
Ug=-f-i: (2g+l)Z',(cos 0)aj8(^r) (12.7) 
where a? is a coefficient which is independent of r and 0.    Furthermore, since £7* is to give rise to an outgoing wave at r=oo, the solution is of the form 
Ui=~T> (22+l)Pff(cos e)bqh^(ktr) (12.8) 
where 6? is a coefficient. 
The four unknown coefficients Aq, Bq, aq, and bq, can be found from the boundary conditions at r=a and c. These require the continuity of the tangential field components. In order to facilitate the solution and to readily permit later generalizations, the (four) boundary conditions as stated above can be replaced by two impedance type boundary conditions. For the qth terms of the series these read 
E^ = -Z(^H{^    at   r=a (12.9) 
and 
fi}«)=ZJf)HJf)    at    r=c (12.10) 
where 
£<<?>=_ r_ 
*       ieu     rjq(kgr) 
and 
1   "dr 
WW)] 
ZJ«>=
iew     rhq2)(kir) Replacing /tr by #, eqs (9) and (10) may be rewritten 
1   d 
and 
x(xU)=i(ZPh)U       iorx=ka (12.11) 
Il(i/) = -i(Z<«>/ij)[/       {oix=kc. (12.12) 
Applying these to eq (3) enable A„ and Bq to be obtained explicitly in terms of known quantities. Using these results leads readily to the following exact solution for a^r^b. 
Us=-^ S {2q+\)h^(kb)h^(kr)Pt(cos 0) ff (12.13) 
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where 
F In p(,)^(fat) ^(fe-nr    ff(.,Ay>(fe) ft}"wi ,191,, 
n -i_ pit)p(«) ki™l ?iJM fioui 
ln'[kaKl){ka)]-iZ^lr, ~ln'[kah™(ka)]-iZf/v 
fo'[W(fcc)]+iZj"/n 1  '      Jn'[icA<»(ifcc)]+iZ}"/ij' 
The symbol Zn' denotes logarithmic differentiation, for example 
d 
(12.17) 
W(*)] ln'[kah^(ka)} 
aui^-dx     _     I (12'18) 
The above result, although rigorous, is not of practical value for vlf propagation calculations because of poor convergence of the series solutions. In fact, something of the order of 2 ka terms are required to achieve 5 percent accuracy. At 15 kc, for example, 2 ka^2,000 which is a rather large number. An important observation, however, is that terms of order q beyond 2 ka contribute little to the series. Thus the spherical Bessel functions jff(kga) may be replaced by the Debye or second-order approximation since \kga\^>^>q in the important range of q so long as |A:g|>^>fc (i.e., well conducting ground).    Thus 
ln'[kgajQ(kga)]^i [l-fTf• (12.19) 
Similarly, for |Z?i|>>& 
ln'[k<ah?(k<i)]**-i [i-fTf* (12-2°) 
Since the total field is of the form 
U=±(2q+l)f(q)PQ(cose) (12.21) 
q = 0 
it can be rewritten as a contour integral over q where the integrand has poles when q takes integrand values.    Such a representation is 
f/=iJc1+c2 cJsV2"^-* [C0S(T-e)] (12'22) 
where the contour Ci + C2 encloses the real axis as illustrated in figure 9. Noting that the poles of the integrand are located at q= 1/2, 3/2, 5/2 . . . etc., it can be readily verified by the theorem of residues that this integral is equivalent to eq (21). Now, subject to the validity of the secondorder approximations, for the wave functions of order ksa and k{a mentioned above, the function /(#-/£) is an even function of q. This means that the part of the contour C\ just above the positive real axis can be replaced by C{ which is located just below the negative real axis (see fig. 9). The contour C{-\-C2 is now entirely equivalent to L, a straight line running along just below the real axis.    Replacing q~-y2 by v the contour representation for U takes the form 
U=-i f ^±D f(v)P, [cos (tt-6)] dv. (12.23) 
J^sm v-k 
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It is to be noted that this manipulation of the contours is only strictly justified when/(g-}£) is an even function of q.    This is well justified when \kg\2 and \kt\2 are both>>F. 
_^v 
Figure 9.     The contours in the complex (j plane. 
The next step in the analysis is to close L by an infinite semicircle in the negative halfplane. The contribution from this part of the contour vanishes as the radius of the semicircle approaches infinity because of the exponentially decreasing character of the integrand. The value of the integral for [/along the contour L is now equal to — 2wi times the sum of the residues of the integrand evaluated at the poles off(v) located in the lower half-plane of v. ft then follows that 
U=-ikCJ2^^h(l\kb)h(l)(kr)^I\[vos(7r-d)} v    SID vir Dv 
(12.24) 
where Dln = dDvfov. All quantities in the summand are to be evaluated at the poles of/W which are the roots of the equation 
D,=0. 
This equation is precisely the same as the one discussed earlier (i.e., eq (5.5)). At that time the relevant spherical wave functions of order ka and kc were simplified by the use of the Debye or second order approximation. The Hankel or third order approximation will now be employed.    It may be written [26] 
where 
and H[%(p) is the Hankel function of order 1/3 of argument p given by 
3    L(»+i)2     J 
For Re (y-\-%)<C<Jz or for jp|>>l, the above reduces to 
to (i) 
xh™(x)Q*S™(x) 
which is the Debye approximation used in section (5). 
The third order representation for the logarithmic derivative is 
L     x  J m%(p) 
while the corresponding second order approximation, valid for |p|>>l is simply 
ln'[xhp(x)]c* ±?f 1-^^T195 
(12.25) 
(12.26) 
(12.27) (12.28) 
(12.29) (12.30) 
For convenience in what follows, it is desirable to introduce two new spherical reflection coefficients rg and rt which are connected to Rg and Rt in the following manner: 
lAa 
ln'[kahl2)(ka)] 
'lnr[kah^(ka)] 
Re= 
In'llcahPQca)] 
^At, 
and 
where 
and 
In'lkchPjkc)] 
ln'[kch!,2)(kc)} 
Rt=
ln'[kahl2)(ka)] 
iAi ' ln'[kcM2)(kc)\ 
iAt 
1 ln'[kch(vl)(kc)} 
(12.31) 
(12.32) 
(12.33) 
(12.34) 
These new reflection coefficients may be expressed to a high order of approximation by using the Hankel or third-order approximation for the spherical Bessel functions of argument ka or kc.    Thus 
b-mi 
«-«• 
my3(Pa) 
HilKpa) 
b-mi 
m%(Pa) 
(12.35) 
e'6 
and 
i-mr 
At 
il  e      6 
where 
and 
To this same approximation 
and 
When \pa\ and |pc|>>l 
b-mi 
y+h f (ka)2 Pa~   3   |>+§)2     J 
v+hV (kc)'2     ,1 
Pc~ 3 l(V+hr   J 
tiHl%(Pc) ' H$l(Pe) 
(12.36) 
3/2 
3/2 
H[UPa) m)i(Pa)   g <=e     flJHGO ff$(p,)   * 
r ~#,, 
'D-CSXT 
(12.37) (12.38) (12.39) (12.40) 
(12.41) 
+Ag 
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and 
f,ttff,al     )"'£  (12.42) 
On writing v+\=kaS= kcS', these latter forms are readily identified as the Fresnel reflection coefficients 
and 
>J{ ^XVgV 'z-i \tlA " J (12 43) 
*   N2g(l-S2)i+(N2g-S2)i 
mi-(s'rt-m-mv. (12 44) 
1   l m[i-(s')2]*+[m-(sy]i 
Attention is turned specifically to the determination of the roots of the equation 
Z}„=0. (12.45) 
This may be written 
P   P   h*    (ka)hv    (fCC)_       2irin (^9Aa\ 
hgiXth?Kka)h^{kcre (lZM) 
where Rg and Rt are defined by eq (31) and (32) and n may take integral values.    Emptying the third-order approximations, this may be rewritten, for Re (v-\-^)<Cka 
fM^EMW  f-i2(yc-7a)fi2(pc-Pa)_   -i27rn /i 2 47) 
where 
and 
■£.['-W* 
while, for &c>Re (v-\-\)^>ka, 
In the above formulas the (spherical) reflection coefficients rg and rt are defined by eqs (35) and (36). When \pa\ and \pc\ >>1 or if Re (i,+ i)<<(k, the relevant equation for the modes is simply 
r0rie-i2(yc-^=e-^n (12.51) 
where rg and rt are defined by eq (41) and (42) which are the Fresnel form of the reflection coefficients.    Equation (51) is identical to eq (5.10) which was discussed previously. 
13. Influence of Stratification at the Lower Edge of the Ionosphere 
Attention in previous sections has been largely confined to a sharply bounded homogeneous ionosphere. In view of the general uncertainty about the electrical properties of the lower edge of the ionosphere, a more elaborate model might hardly seem worthwhile. Furthermore, despite the geometrical simplicity of the above models, the computation of the modes is very 
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involved in the general case. Despite these disparaging remarks the inhomogeneity of the lower ionosphere may be considered in some cases without greatly increasing the complexity. Some of these generalizations are discussed here for what they are worth. 
The theoretical treatment given in section (3) for a vertical electric dipole located in the air space between a flat ground and a plane interface of a homogeneous ionosphere may be easily generalized to a stratified ionosphere. The essential modification is to replace the ionosphere reflection coefficient Ri{C) by a more elaborate form which is denoted Ri(C). For example, a two layer ionosphere is chosen. The lower edge is at z=h and from there to z=h+s, the refractive index (assumed constant and isotropic) is Ni) at this point the refractive index (also assumed constant and isotropic) is N2 and remains at this value thereafter. It is not at all difficult to show that, for vertical polarization [31], 
E(C).   MC-jNl-SVQ . 
where 
Q^NUNt-S^+NKNj-S^ tanh [iks(Nf-S2)^] ,    2) 
Ni(m-S2)i+m(Nl-S2)i tanh [iks(Nl-S2)i] 
Here it may be observed that if \kNis\ <C«0 the reflection coefficient becomes 
n      JtlC-(Nl-S^ 133) 
v       NlC+(Ni-S2)k> 
whereas if \kNis\ >>1, it becomes 
-       n2g—(N2—s2)* 
N2C+(Nl-S2)* 
These two limiting cases correspond respectively, to the conditions of an electrically thin and an electrically thick stratum. In the former case the effective reflection level is at z=h-\-s and in the latter case it is at z=h. 
The formula for Rt(C) may easily be generalized to any number of layers. For example, in the case of discrete layers or strata, 0<2<7*, corresponds to the air; h<Cz<Ch+Si corresponds to a stratum with index iV~i, h+Si<C^<ChJrSi+s2 corresponds to a stratum with index N2, and so on.    (See fig. 10.)    With this generalization, Q, in eq (1), is to be replaced by 
0 _iVf(^I-^2)^2+iVl(Arf->S2)Hanh[fe1(^-^)i] Nl(m-S2)> + m(N22-S2)*Q2 tanh [iks^Nl-S2)*] 
Q _N22(Ni-S2)Q3+NUN22-S2) tanh [iks2(Nl-S2)^] ^2   NI(N2-S2)+N22(m-S2)Qz tanh [iks2(N\-S2)*] 
and so on. Q2, Q±, Q5 . . . are obtained by cyclic permutation of indices. It should be noted, however, for M discrete strata that QM=^ since effectively Sm=°°• The resultant Hertz vector for the air space 0<s<A is then formally given by eq (3.13) with the more general meaning now attached to the ionosphere reflection coefficient. In the general case, the rigorous evaluation of the integrals would be extremely involved. However, using arguments similar to those for the homogeneous ionosphere, the field may be approximated as a sum of residues evaluated at the poles of the integrand. Thus the contributions from the branch points are again neglected since for finitely conducting layers they correspond to heavily damped waves. Therefore, the residue series formula given by eq (3.15) is also applicable if the reflection co
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Figure 10.    Stratified model for ionosphere. 
efficient Ri(Cn) is replaced by Ri(Cn).    The modal equation now reads 
~Ri(Cn)Rg(Cn) exp (—2ikhCn) = exp (-i&rw) (13.7) 
where n takes integral values. 
A numerical treatment and an application for the special case of a two-layer ionosphere has been carried out and reported in the literature [21]. There is no intrinsic difficulty in extending such calculations to an indefinitely large number of such layers each with infinitesimal thickness. For finitely conducting strata such a process converges and leads to an adequate representation for a continuous refractive index profile. 
A great simplification to the formulas for a stratified ionosphere is effected if the refractive indices for all layers are large.    For example, if |iVi|, \N2\  . . .  |ATM| ->->l, then 
^N.Q.+ N, tanh flfexJVQ ^1^N2+N1Q2 tanh (iks.NJ K 6t*} 
n ^N2Q3+N, tanh (iks2N2) 
^2=Nz+N2Qd tanh {iks2N2) {i6*} 
and so on. Thus to this approximation, Qi does not depend on the angle of incidence or the factor C.    In this case, the modal equation simplifies to 
khCn^wn+iAlCn (13.10) 
where 
A=4+|- (13.11) 
Regarding A/Cn as a small quantity, this can be solved to give 
s-KS)?-^1-©']"4 <i3-i2» 
where e0=l, en=2(n^0). This is valid if \Akh\ <<1 and |A| <<M [1 — (irn/kh)2]. Thus, at extremely low frequencies and for highly conducting layers, the propagation factor Sn is expressible in a relatively simple form. 
The special case of a two layer ionosphere was considered in some detail in a previous paper [21]. Such a model was sufficient to explain the variation of the observed attenuation rate for frequencies of the order of 500 cps to 15 kc. 
Exponential Profiles 
At the extremely low frequencies it was seen that for a stratified model of the ionosphere, the factor Q does not depend on C or S. In fact, it is not difficult to show that the surface impedance Z at 2 — h looking outwards is given by 
Z=rioQi/Ni        where r;0^1207r. 199 
From this viewpoint is becomes quite easy to write down expressions for Qi for other profiles. For example, if the refractive index varies in an exponential fashion relatively simple formulas are obtained.    Two cases which could be considered are 
iV(z) = 1.0for 0<3<A, 
N{z)^Nexp [zf(z-k)/l] for z>h, 
where the (—) sign corresponds to a refractive index decreasing with height and the (+) sign corresponds to a refractive index increasing with height. In the above, Z is a scale factor; for example, at within a distance / above the lower edge of the ionosphere, the refractive index has changed from N to N/e or Ne for the two respective cases. 
Within the layers of the ionosphere propagation is vertically upwards and thus a component E of the electric field satisfies 
&E dz 
^2+k2N2{z)E=0       for z>h. 
Solutions of this equation for the exponential form of N2(z) are 
constX/o (ikNle-(z~h)/r) E= (13.13) 
ooDstXX,o(ifcM«+c,-*)/l) 
for the two respective cases, where I0 and K0 are modified Bessel functions. The transverse component of the magnetic field is then found from Maxwell's equations, e.g., inooH=()E/dz. The surface impedance Z at the lower edge of this model of the ionosphere is then defined by 
Z=E/H]2=h. 
For the case when the refractive index decreases with height 
Hs<™=HS (1314> 
and when the refractive index increases with height, 
For low frequencies, ikNl^-yji x with sc=|iV| kl. The arguments of modified Bessel functions are thus proportional to -yji. Numerical values are shown in the table for certain real values of x. In both_these cases, it may be observed that as the scale length I approaches infinity, Z becomes rj0/N as it should. 
The simplicity of the above formulas for the exponential profiles is due to the inherent assumption that the refractive index N{z) is large compared to unity for z^>h. When this condition is violated, such as it would be at frequencies above several kilocycles per second, the solution is not expressible in closed form, except for horizontal polarization [32] which is really only of academic interest at vlf. Nevertheless for calculation of attenuation rates at extremelylow-frequencies (less than 1 kc, say), the exponential models find direct application. For example, if Q=l the homogeneous ionosphere is regained and the attenuation rate {—1c Im S0) is proportional to ^; on the other hand for an exponential profile with N{z) increasing upwards, the attenuation rate increases with frequency more rapidly as suggested by experimental data. In fact, it is quite easy to see, for both decreasing and increasing exponential profiles, that 
Attenuation rate for exponential model __ ^ ,^,   .    />__        ~\ Attenuation rate for homogeneous model   A    '^' '      \4       °    / 
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Table 1.    Selected numerical values of the factor Q 
	
	Q-7o< 
	y'i x) 
V7i) 
	Q-Ko 
A', 
	

	J 
	\Q\ 
	arg Q 
	IPI 
	arg Q 

	0.2 
	10. 000 
	-44°43' 
	0.3854 
	23°58' 

	0.5 
	4. 003 
	-43° 13' 
	0. 5880 
	17°16' 

	1.0 
	2.026 
	-37°55' 
	0.7344 
	11°59' 

	1.5 
	1.417 
	-29°52' 
	0.8047 
	9°15' 

	2.0 
	1.180 
	-20° 59' 
	0.8469 
	7°28' 

	2.5 
	1.100 
	-13°44' 
	0.8728 
	6°20' 

	3.0 
	1.083 
	-9°09' 
	0.8919 
	5°28' 

	4.0 
	1.080 
	-5°42' 
	0.9169 
	4°18' 

	5.0 
	1.073 
	-4°37' 
	0.9325 
	3°33' 

	6.0 
	1.060 
	-3°49' 
	0. 9433 
	3°02' 

	7.0 
	1.051 
	-3° 19' 
	0.9511 
	2°37' 

	8.0 
	1.045 
	-2°47' 
	0.9570 
	2°16' 

	9.0 
	1.040 
	-2°26/ 
	0. 9618 
	2°06' 

	10. 0 
	1.035 
	-2°11' 
	0. 9654 
	1°54' 

	0.1 
	
	
	0.25518 
	27°22' 

	0.3 
	
	
	0.4719 
	21°08' 

	0.7 
	
	
	0.6622 
	14°38' 


The right-hand side of the above equation is a function of the quantity x=|iV|Z^(o3r/w)i/ where co = cr/€o_is the conductivity at the lower edge of the ionosphere and I is the vertical distance [in which N changes by a factor 2.718. 
The author thanks Mr. Kenneth Spies for his careful reading of the manuscript and [Mrs. Ami Fails for her typing and assistance in preparing the bibliography. 
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A self-contained treatment of the waveguide mode theory of the propagation of very
low-frequency radio waves is presented. The model of a flat earth with a sharply bounded
and homogencous ionosphere is treated for both vertical and horizontal dipole excitation.
The properties of the modes are discussed in considerable detail.

The influence of earth curvature is also considered by reformulating the problem using
spherical wave functions of complex order. The modes in such s curved guide are investi-
gated and despite the initial complexity of the general solution, many interesting and
limiting cases may be treated in simple fashion to yield useful and convenient formulas for
caleulation.

Other factors considered are the influence of the es
resonator type oscillations, and the influence of stratification at the low
ionosphere.

th's magnetic field, antipodal effects,
r edge of the

1. Introduction

The concept that radio waves are channeled between the earth and the ionosphere as in
a waveguide has proved to be very useful at very low frequencies (<30 ke). In 1919, G. N.
Watson [1] * employed this approach when he considered, at least in a formal way, the propaga-
tion of electromagnetic waves between an idealized homogeneous spherical earth and a concentric
reflecting layer. Because of the extremely poor convergence of the exact series solutions,
Watson devised a technique to convert this to a more rapidly conve
theoretic means. The new representation corresponds to the sum of residues at poles in the

ng series using funetion-

complex plane and hence the name “residue series.” The waves associated with these poles
are the waveguide modes. Watson studied the numerical properties of these modes for the
highly conducting shell.
This particular aspeet of his investigation was prompted by the recent discoveries of Marconi
that radio waves decay much more slowly with distance than predicted on the basis of classical
diffraction theory in the absence of a reflecting shell.  Watson found that the modes of low
attenuation behaved like

¢ of long waves or low frequencies and on assumption of a ver

e—aiimd

(sin d/a)¥

where d is the great circle distance, fis the frequency, ¢ is the conductivity of the reflecting
ionosphere, @ is the radius of the earth, and ais a constant. For frequencies in the range from
about 20 to 40 ke, observed field strengths behaved more or less in this fashion if the effective
s taken to be about 107" mhos/m or a conductivity of the same order

ionospheric conductivity w:
as “tap water”. Actually for frequencies in this range some 10 to 30 modes would be excited
and if the complete mode sum were considered, the calculated field strength ves
curve using such a model would show many rapid and violent undulations. Such a behavior

sus dis

ance

is not observed under normal conditions and this fact alone is sufficient cause to reject this
model even from a phenomenological viewpoint. The same model with certain refinements
has been discussed more recently by Rydbeck [2] in a monograph, Bremmer [3] in his book,
Schumann [4 to 6] in a serics of papers, and most recently by Kaden [7].  From the frequency

* Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo,
1 Figures in brackets indicate the literature references at the end of this paper.
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